精英家教网 > 高中数学 > 题目详情
17.如图,α∩β=CD,α∩γ=EF,β∩γ=AB,AB∥EF,求证:CD∥EF.

分析 先利用线面平行的性质定理证明AB平行于CD,AB平行于EF,再利用平行公理,即可证得CD∥EF.

解答 证明:∵AB∥平面α,AB?β,α∩β=CD,
∴AB∥CD,
∵AB∥平面α,AB?γ,α∩γ=EF,
∴AB∥EF,
由平行公理得:CD∥EF.

点评 本题考查了线面平行的性质定理的运用,平行公理的运用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若集合A={x|x2+x-6=0},B={x|mx+1=0},B?A,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出以下四个命题:
①命题“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的充要条件;
④若命题p:向量$\overrightarrow{a}$=(1,-2)与向量$\overrightarrow{b}$=(1,m)的夹角为锐角为真命题,则实数m的取值范围是(-∞,$\frac{1}{2}$).
其中正确命题的序号是①③(写出所有满足题意的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)的二次项系数为a,且不等式f(x)+2x>0的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等实数根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围;
(3)若f(x)≥0对任意x∈[2,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列不等式中一定成立的是(  )
A.m+$\frac{1}{m}$≥2B.$\frac{n}{m}$+$\frac{m}{n}$≥2C.m2+n2≥2mnD.m+n≥2$\sqrt{mn}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题P:函数y=loga(2x+1)在定义域上单调递增;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P、Q都是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:①存在实数α,使sinαcosα=1,②函数y=sin($\frac{3π}{2}$+x)是偶函数;③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)的一条对称轴;④若α、β是第一象限的角,且α>β,则sinα>sinβ.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正方形ABCD中,点P是射线BC上的任意一点(点B与点C除外),连接DP,分别过点C,A作直线DP的垂线,垂足为点E,F.
(1)当点P在BC的延长线上时,那么线段AF、CE、EF之间有怎样的数量关系?请证明你的结论;
(2)当点P在边BC上时,联结AP,正方形的边长为2,设CE=x,AF=y.求y与x的函数解析式.并写出函数的定义域;
(3)在(2)的条件下,当x=1时.求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若数列{an}的第四项是15,(an+1-an-3)(an+1-4an)=0(n∈N*),则满足条件的a1所有可能值之积为0.

查看答案和解析>>

同步练习册答案