(本小题满分12分)
已知直线l1:4x:-3y+6=0和直线l2x=-p/2:.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(I )求抛物线C的方程;
(II)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存 在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.
(1)
(2)
即在x轴上存在定点Q(1,0)在以MN为直径的圆上
【解析】
试题分析:解: (Ⅰ)由定义知
为抛物线的准线,抛物线焦点坐标![]()
由抛物线定义知抛物线上点到直线
的距离等于其到焦点F的距离.
所以抛物线上的点到直线
和直线
的距离之和的最小值为焦点F到直线
的距离.…………2分
所以
,则
=2,所以,抛物线方程为
.………………4分
(Ⅱ)设M
,由题意知直线
斜率存在,设为k,且
,所以直线
方程为
,
代入
消x得:![]()
由
………………6分
所以直线
方程为
,令x=-1,又由
得![]()
设
则![]()
由题意知
……………8分
,把
代入左式,
得:
,……………10分
因为对任意的
等式恒成立,
所以![]()
所以
即在x轴上存在定点Q(1,0)在以MN为直径的圆上.……………12分
考点:本试题考查了抛物线的知识点。
点评:解决直线与圆锥曲线的位置关系的考查,一般采用设而不求的联立方程组的思想来求解,结合韦达定理,和向量的数量积公式,来得到坐标之间的关系式,然后求解证明结论。对于点是否在圆上的问题,可以通过向量的数量积垂直来说明即可,中档题。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com