精英家教网 > 高中数学 > 题目详情
若F1,F2是椭圆
x2
9
+
y2
4
=1
的两个焦点,A、B是过焦点F1的弦,则△ABF2的周长为(  )
A、6B、4C、12D、8
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出椭圆的a=3,由椭圆的定义,可得△ABF2的周长为4a,计算即可得到.
解答: 解:椭圆
x2
9
+
y2
4
=1
的a=3,
由椭圆的定义,可得,
|AF1|+|AF2|=|BF1|+|BF2|=2a,
则△ABF2的周长为|AB|+|AF2|+|BF2|
=|AF1|+|BF1|+|AF2|+|BF2|=4a=12.
故选C.
点评:本题考查椭圆的方程和性质,主要考查椭圆的定义,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α,β都是锐角,且sin(α+β)=2sinα,求证:α<β.(用反证法证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与BC交于点D.
(1)求证:ED2=EC•EB
(2)若BC是△ABC的外接圆的直径,且BC=2,CE=1.求AC长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,动点P到x轴的距离的平方恰比点P的横纵坐标的乘积小1.记动点P的轨迹为C,下列对于曲线C的描述正确的是
 

①曲线C关于原点对称;
②曲线C关于直线y=x对称;
③当变量|y|逐渐增大时,曲线C无限接近直线y=x;
④当变量|y|逐渐减小时,曲线C与x轴无限接近.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+y2=1的焦点为F1,F2,若点P在椭圆上,且满足|PO|2=|PF1|•|PF2|(其中O为坐标原点),则称点P为“★点”,那么该椭圆上“★点”的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知lg(a-1)+lg(b-2)=lg2,则a+b的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的最小正周期为T,且在一个周期内的图象如图所示,
(1)求函数的解析式;
(2)若函数g(x)=f(mx)+1(m>0)的图象关于点M(
3
,0)对称,且在区间[0,
π
2
]上不是单调函数,求m的取值所构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan2α+6tanα+7=0,tan2β+6tanβ+7=0,α,β∈(0,π)且α≠β,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=6x的准线方程为
 

查看答案和解析>>

同步练习册答案