精英家教网 > 高中数学 > 题目详情
已知P()为函数图像上一点,O为坐标原点,记直线OP的斜率
(Ⅰ)求函数的单调区间;
(Ⅱ)设,求函数的最小值。
(Ⅰ)上单调递增,在上单调递减;(Ⅱ)函数的最小值为

试题分析:(Ⅰ)求函数的单调区间,首先确定函数的解析式,由题意得函数,求单调区间,由于含有对数函数可利用导数法,求导函数,令可得函数的单调增区间;令,可得函数的单调减区间;(Ⅱ)求函数的最小值,因为,求导函数可得,构造新函数,确定为单调递增函数,从而可求函数的最小值.
试题解析:(Ⅰ)

故当时,,当时,成立,
所以上单调递增,在上单调递减。(4分)
(Ⅱ)

,则
上的增函数,(8分)
又由于,因此有唯一零点1,
为负,在值为正,
因此为单调减函数,在为增函数,
所以函数的最小值为。(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-ax(a>0).
(I)当a=2时,求f(x)的单调区间与极值;
(Ⅱ)若对于任意的x∈(0,+),都有f(x)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(1)当时,讨论函数的单调性;
(2)当有两个极值点(设为)时,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,
(Ⅰ)当a=4时,求函数f(x)的单调区间;
(Ⅱ)求函数g(x)在区间上的最小值;
(Ⅲ)若存在,使方程成立,求实数a的取值范围(其中e=2.71828是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若函数有两个极值点),求k的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程;
(Ⅱ)若函数在区间内不单调,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-aln xx(a≠0),
(1)若曲线yf(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为R上的可导函数,当时,,则函数的零点分数为(  )
A.1B.2C.0D.0或2

查看答案和解析>>

同步练习册答案