精英家教网 > 高中数学 > 题目详情
已知,函数.
(1)当时,讨论函数的单调性;
(2)当有两个极值点(设为)时,求证:.
(1)详见解析;(2)详见解析.

试题分析:(1)先求出函数的导函数,确定导数的符号,实质上就是确定分子的正负,从而确定函数在定义域上的单调性,即对分子的的符号进行分类讨论,从而确定的符号情况,进而确定函数在定义域上的单调性;(2)根据之间的关系,结合韦达定理得出以及的表达式,代入所证的不等式中,利用分析法将所要证的不等式转化为证明不等式,利用作差法,构造新函数,利用导数围绕来证明.
试题解析:(1)
,考虑分子
,即时,在上,恒成立,此时上单调递增;
,即时,方程有两个解不相等的实数根:,显然
时,;当时,
函数上单调递减,
上单调递增.
(2)的两个极值点,故满足方程
的两个解,

而在中,
因此,要证明
等价于证明
注意到,只需证明,即证
,则
时,,函数上单调递增;
时,,函数上单调递减;
因此,从而,即,原不等式得证.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=aln xax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数yf(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3x2 (f′(x)是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×< (n≥2,n∈N*)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若上是增函数,求实数a的取值范围;
(Ⅱ)证明:当a≥1时,证明不等式≤x+1对x∈R恒成立;
(Ⅲ)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(1)求函数上的单调区间;
(2)设函数,是否存在区间,使得当时函数的值域为,若存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(Ⅰ)若,求的值,并求此时曲线在点处的切线方程;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P()为函数图像上一点,O为坐标原点,记直线OP的斜率
(Ⅰ)求函数的单调区间;
(Ⅱ)设,求函数的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)讨论的单调性;
(Ⅱ)若在(1,+)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分) 已知函数为自然对数的底数)。
(1)若,求函数的单调区间;
(2)是否存在实数,使函数上是单调增函数?若存在,求出的值;若不存在,请说明理由。恒成立,则,又

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.

查看答案和解析>>

同步练习册答案