精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)若,求函数的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.
(Ⅰ)极小值;(Ⅱ)参考解析

试题分析:(Ⅰ)首先考虑定义域.再把代入求导.令导函数可求得极值点.再通过函数的单调性即可知道函数的极值.
(Ⅱ)由.在区间上,函数的图像在函数的图像的下方,可转化为在区间上恒成立的问题.从而令函数F(x)=.通过求导即可求得F(x)函数的最大值.从而可得结论.
试题解析:(Ⅰ)解由于函数f(x)的定义域为(0,+∞),      1分
当a=-1时,f′(x)=x-        2分
令f′(x)=0得x=1或x=-1(舍去),     3分
当x∈(0,1)时,f′(x)<0, 因此函数f(x)在(0,1)上是单调递减的,     4分
当x∈(1,+∞)时,f′(x)>0,因此函数f(x)在(1,+∞)上是单调递增的,  5分
则x=1是f(x)极小值点,
所以f(x)在x=1处取得极小值为f(1)=            6分
(Ⅱ)证明     设F(x)=f(x)-g(x)=x2+ln x-x3
则F′(x)=x+-2x2,     9分
当x>1时,F′(x)<0,                         10分
故f(x)在区间[1,+∞)上是单调递减的,           11分
又F(1)=-<0,        12分
∴在区间[1,+∞)上,F(x)<0恒成立.即f(x)—g(x)<0恒成立
即f(x)<g(x)恒成立.
因此,
当a=1时,在区间[1,+∞)上,函数f(x)的图像在函数g(x)图像的下方.13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(1)当时,讨论函数的单调性;
(2)当有两个极值点(设为)时,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的导函数是处取得极值,且
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的极值;
(2)若函数在定义域内为增函数,求实数m的取值范围;
(3)若的三个顶点在函数的图象上,且分别为的内角A、B、C所对的边。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像如图所示,且.则的值是     

查看答案和解析>>

同步练习册答案