精英家教网 > 高中数学 > 题目详情
已知函数的图像如图所示,且.则的值是     
3.

试题分析:因为,所以由得c=0.由图可知f(0)=3可得d=3.所以c+d=3.故填3.本题看是字母参数很多,但关键是利用两个条件就可以求出需要的两个字母的值.图中标出的位置在这里有迷惑的作用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题13分) 已知函数为自然对数的底数)。
(1)若,求函数的单调区间;
(2)是否存在实数,使函数上是单调增函数?若存在,求出的值;若不存在,请说明理由。恒成立,则,又

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)当时,求的单调区间
(Ⅱ)若不等式有解,求实数m的取值菹围;
(Ⅲ)定义:对于函数在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数在其公共定义域内的所有差值都大干2。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,试讨论的单调性;
(Ⅱ)设,当时,若对任意,存在,使,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线在点处切线方程为.
(1)求的值;
(2)讨论的单调性,并求的极大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求处的切线方程;
(2)若内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,且函数上存在反函数,则(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的对称中心为,记函数的导函数为的导函数为,则有.若函数,则可求得_________.

查看答案和解析>>

同步练习册答案