精英家教网 > 高中数学 > 题目详情
已知函数,曲线在点处切线方程为.
(1)求的值;
(2)讨论的单调性,并求的极大值.
(1);(2)单调递增,在单调递减,极大值为.

试题分析:本题考查导数的运算以及利用导数研究曲线的切线方程、函数的单调性和极值等数学知识,考查综合运用数学知识和方法分析问题解决问题的能力.第一问,对求导,利用已知列出斜率和切点纵坐标的方程,解出的值;第二问,利用第一问的的值,写出解析式,对它求导,令解出单调增区间,令,解出单调减区间,通过单调区间判断在处取得极大值,将代入到中求出极大值.
试题解析: (Ⅰ),由已知得,故
从而.
(II) 由(I)知, 
  
得,
从而当时,;当时,.
单调递增,在单调递减.
时,函数取得极大值,极大值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的导函数是处取得极值,且
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x)

(1)求f(x)在x=3处的切线斜率;
(2)若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
(3)若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求的单调区间;
(II)若存在使求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最小值.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的极值;
(2)若函数在定义域内为增函数,求实数m的取值范围;
(3)若的三个顶点在函数的图象上,且分别为的内角A、B、C所对的边。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像如图所示,且.则的值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为________

查看答案和解析>>

同步练习册答案