精英家教网 > 高中数学 > 题目详情
已知函数.
(1)当时,求处的切线方程;
(2)若内单调递增,求的取值范围.
(1)曲线处的切线方程为
(2)实数的取值范围是.

试题分析:(1)先将代入函数的解析式,求出,从而求出的值,最后利用点斜式写出曲线处的切线方程;(2)将内单调递增等价转化为进行求解,进而求出参数的取值范围.
试题解析:(1)当时,,则

故曲线处的切线方程为,即
(2)由于函数内单调递增,则不等式在区间上恒成立,
,则不等式在区间上恒成立,
在区间上恒成立,即在区间上恒成立,
而函数处取得最大值,于是有,解得
故实数的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的极值;
(2)若函数在定义域内为增函数,求实数m的取值范围;
(3)若的三个顶点在函数的图象上,且分别为的内角A、B、C所对的边。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数的一个极值点.
(1)求的关系式(用表示),并求的单调递增区间;
(2)设,若存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是R上的奇函数,当取得极值.
(I)求的单调区间和极大值
(II)证明对任意不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数在定义域内为增函数,求实数的取值范围;
(2)设,若函数存在两个零点,且实数满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数均为正常数),设函数处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像如图所示,且.则的值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为________

查看答案和解析>>

同步练习册答案