精英家教网 > 高中数学 > 题目详情
已知函数的对称中心为,记函数的导函数为的导函数为,则有.若函数,则可求得_________.

试题分析:
则对称中心为


,即.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求的单调区间;
(II)若存在使求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最小值.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的极值;
(2)若函数在定义域内为增函数,求实数m的取值范围;
(3)若的三个顶点在函数的图象上,且分别为的内角A、B、C所对的边。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是函数的一个极值点.
(1)求的关系式(用表示),并求的单调递增区间;
(2)设,若存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像如图所示,且.则的值是     

查看答案和解析>>

同步练习册答案