精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)当时,试讨论的单调性;
(Ⅱ)设,当时,若对任意,存在,使,求实数取值范围.
(I) 当时,当时,在上,,在上,,函数上单调递减,在上单调递增;当时,函数单调递减;当时,时,,函数上单调递减;时,函数上单调递增;时,函数上单调递减;(II)实数取值范围

试题分析:(I) 当时,试讨论的单调性,首先确定定义域,可通过单调性的定义,或求导确定单调性,由于,含有对数函数,可通过求导来确定单调区间,对函数求导得,由此需对参数讨论,分三种情况,判断导数的符号,从而得单调性;(II)设,当时,若对任意,存在,使,求实数取值范围,由题意可知,当时,若对任意时,的最小值大于或等于当的最小值即可,由(I)知,当时,单调递减,在单调递增.,只需求出的最小值,由于本题属于对称轴不确定,需讨论,从而确定实数取值范围.也可用分离参数法来求.
试题解析:(I) =)   3分
时,在上,,在上,,函数上单调递减,在上单调递增;    4分
时,,函数单调递减;                   5分
时,时,,函数上单调递减;时,,函数上单调递增;时,,函数上单调递减.     7分
(II)若对任意,存在,使成立,只需      9分
由(I)知,当时,单调递减,在单调递增.,     11分
法一:,对称轴,即时,,得:
,即时,,得:
,即时,,得:.          14分
综上:.                         15分
法二:
参变量分离:,                     13分
,只需,可知上单调递增,.  15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程;
(Ⅱ)若函数在区间内不单调,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若,求证:当时,
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若存在使得≥0成立,求的范围
(2)求证:当>1时,在(1)的条件下,成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求的单调区间;
(II)若存在使求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数在定义域内为增函数,求实数的取值范围;
(2)设,若函数存在两个零点,且实数满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像如图所示,且.则的值是     

查看答案和解析>>

同步练习册答案