精英家教网 > 高中数学 > 题目详情
已知函数.
(1)若,求证:当时,
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.
(1)详见解析;(2);(3)详见解析.

试题分析:(1)将代入函数解析式,利用导数函数在区间上的单调性,进而由单调性证明;(2)解法一是“将函数在区间上单调递增”转化为“不等式在区间上恒成立”,然后利用参数分离法等价转化为“不等式在区间上恒成立”,最终转化为;解法二是先将问题转化为在区间上恒成立,对参数进行分类讨论,围绕,从而对参数进行求解;(3)先将不等式等价转化证明,在(2)中,令得到,然后在(2)中得到,两边取对数得到,在令,得到,再结合放缩法得到,需注意第一个不等式不用放缩法,即,利用累加法便可得到,从而证明相应的不等式.
试题解析:(1),则
上单调递增,
故函数上单调递增,所以
(2)解法一:,下求使恒成立的的取值范围.
时,由,得上恒成立,
,则有,则,令,解得
列表如下:










极小值

故函数处取得极小值,亦即最小值,即
故实数的取值范围是
解法二:,下求使恒成立的的取值范围.
,显然,则在区间上单调递增;
,则
时,,则上单调递增,
于是上单调递增;
时,上单调递减,在上单调递增,
于是
,则
综上所述,的取值范围是
(3)由(1)知,对于,有
,从而有
于是

.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知.
(Ⅰ)请写出的表达式(不需证明);
(Ⅱ)求的极小值
(Ⅲ)设的最大值为的最小值为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (为实常数) .
(1)当时,求函数上的最大值及相应的值;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,试讨论的单调性;
(Ⅱ)设,当时,若对任意,存在,使,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若且函数在区间上存在极值,求实数的取值范围;
(2)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)满足(x+2)f’(x)<0,又a=f(log0.53),b=f(()0.3),c=f(ln3),则(     )
A.a<b<cB.b<c<aC.c<a<bD.c< b<a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,现给出如下结论:
;②;③;④.
其中正确结论的序号为(   )
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,且函数上存在反函数,则(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案