精英家教网 > 高中数学 > 题目详情
已知函数f(x)=aln xax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数yf(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3x2 (f′(x)是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×< (n≥2,n∈N*)
(1)单调增区间为(1,+∞),减区间为(0,1).(2)不是,(3)见解析
(1)解 当a=-1时,f′(x)= (x>0)
f′(x)>0,得x∈(1,+∞);
f′(x)<0,得x∈(0,1).
∴函数f(x)的单调增区间为(1,+∞),减区间为(0,1).
(2)解 ∵f′(x)= (x>0),∴f′(2)=-=1得a=-2,∴f(x)=-2ln x+2x-3,g(x)=x3x2-2x,∴g′(x)=3x2+(m+4)x-2,∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2,∴
由题意知:对于任意的t∈[1,2],gt<0恒成立,
所以,∴-<m<-9.
m的取值范围是.
(3)证明 由(1)知当x∈(1,+∞)时f(x)>f(1),即-ln xx-1>0,∴0<ln x<x-1对一切x∈(1,+∞)成立.
n≥2,n∈N*,则有0<ln n<n-1,∴0<.
 (n≥2,n∈N*).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数处存在极值.
(1)求实数的值;
(2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围;
(3)当时,讨论关于的方程的实根个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知函数f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求实数t的取值范围;
(2)证明:<ln,其中0<a<b;
(3)设[x]表示不超过x的最大整数,证明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(1)当时,讨论函数的单调性;
(2)当有两个极值点(设为)时,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx(a,b∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)若f(1)=,且函数f(x)在上不存在极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-2x2+3mx∈[0,+∞),若f(x)+5≥0恒成立,则实数m的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xln xg(x)=x3ax2x+2.
(1)求函数f(x)的单调区间;
(2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-aln xx(a≠0),
(1)若曲线yf(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案