| A. | 144 | B. | 256 | C. | 24$\sqrt{3}$ | D. | 64$\sqrt{3}$ |
分析 由题意求得S和 P的值,根据P+S=272求得n的值,再利用基本不等式求得函数f(x)的最小值.
解答 解:由题意可得P=4n,S=2n,
∴P+S=4n+2n=272,解得2n=16,
∴n=4,
在(0,+∞)上,
函数f(x)=(3x+$\frac{1}{x}$)n =(3x+$\frac{1}{x}$)4≥${(2\sqrt{3})}^{4}$=144,当且仅当x=$\frac{\sqrt{3}}{3}$时,等号成立,
故函数f(x)=(3x+$\frac{1}{x}$)n在(0,+∞)上的最小值为144,
故选:A.
点评 本题主要考查二项式定理的应用,二项式系数的性质,注意各项系数和与各项的二项式系数和的区别,基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$ | B. | $\frac{2}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$ | C. | $\frac{1}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$ | D. | $\frac{1}{3}$$\overrightarrow{OA}$-$\frac{4}{3}$$\overrightarrow{OB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 评分等级 | ☆ | ☆☆ | ☆☆☆ | ☆☆☆☆ | ☆☆☆☆☆ |
| 小学 | 2 | 7 | 9 | 20 | 12 |
| 中学 | x | y | 18 | 12 | 8 |
| 学校类型 | 满意 | 不满意 | 总计 |
| 小学 | 50 | ||
| 中学 | 50 | ||
| 总计 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sin(α+β)=sinαcosβ+cosαsinβ | B. | sin(α-β)=cosβsinα-sinβcosα | ||
| C. | cos(α-β)=cosαcosβ-sinαsinβ | D. | cos(α+β)=cosαcosβ-sinαsinβ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{10}$ | p |
| A. | $\frac{1}{2}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com