精英家教网 > 高中数学 > 题目详情
1.△ABC的内角A、B、C对的边分别为a、b、c,$\overrightarrow m$=(sinB,5sinA+5sinC)与$\overrightarrow n$=(5sinB-6sinC,sinC-sinA)垂直.
(1)求sinA的值;
(2)若a=2$\sqrt{2}$,求△ABC的面积S的最大值.

分析 (1)利用已知及平面向量数量积的运算可得${sin^2}B+{cos^2}C-{cos^2}A=\frac{6sinBsinC}{5}$,利用正弦定理,余弦定理得$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{3}{5}$,根据同角三角函数基本关系式即可得解sinA的值.
(2)由(1)可得:b2+c2-a2=$\frac{6bc}{5}$,利用基本不等式可求bc≤10,根据三角形面积公式即可计算得解.

解答 解:(1)∵$\overrightarrow m=({sinB,5sinA+5sinC})$与$\overrightarrow n=({5sinB-6sinC,sinC-sinA})$垂直,
∴$\overrightarrow m•\overrightarrow n=5{sin^2}B-6sinBsinC+5{sin^2}C-5{sin^2}A=0$,
即${sin^2}B+{sin^2}C-{sin^2}A=\frac{6sinBsinC}{5}$.
根据正弦定理得${b^2}+{c^2}-{a^2}=\frac{6bc}{5}$.由余弦定理得$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{3}{5}$.
∵A为三角形内角,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$.
(2)由(1)可得:b2+c2-a2=$\frac{6bc}{5}$,
∴$\frac{6bc}{5}$=b2+c2-a2≥2bc-a2
又∵a=2$\sqrt{2}$,
∴bc≤10,
∵△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{2bc}{5}$≤4,
∴△ABC的面积S的最大值为4.

点评 本题主要考查了平面向量数量积的运算,正弦定理,余弦定理,同角三角函数基本关系式,基本不等式,三角形面积公式的综合应用,考查了转化思想和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知g(x)=$\frac{1}{x}$,f(x)=2x+1,x∈(-1,2),求f[g(x)]的定义域?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.lg$\sqrt{100}$+$\sqrt{(π-4)^{2}}$=5-π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果执行如图所示的框图,输入N=5,则输出的数S等于(  )
A.$\frac{5}{4}$B.$\frac{5}{6}$C.$\frac{6}{5}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i为虚数单位,复数z=$\frac{3-4i}{2+i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,S11=22,a4=-12,若am=30,则 m=(  )
A.9B.10C.11D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为(  )
A.c<a<bB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若(3x+$\frac{1}{x}$)n(n∈N*)的展开式中各项系数的和为P,所有二项式系数的和为S,若P+S=272,则函数f(x)=(3x+$\frac{1}{x}$)n在(0,+∞)上的最小值为(  )
A.144B.256C.24$\sqrt{3}$D.64$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过抛物线y=2x2的焦点且垂直于它的对称轴的直线被它切得的弦长为(  )
A.2B.1C.0.25D.0.5

查看答案和解析>>

同步练习册答案