精英家教网 > 高中数学 > 题目详情
16.已知i为虚数单位,复数z=$\frac{3-4i}{2+i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘除运算化简复数z,求出复数z在复平面内对应的点的坐标,则答案可求.

解答 解:∵z=$\frac{3-4i}{2+i}$=$\frac{(3-4i)(2-i)}{(2+i)(2-i)}=\frac{2-11i}{5}=\frac{2}{5}-\frac{11}{5}i$,
∴复数z在复平面内对应的点的坐标为:($\frac{2}{5}$,$-\frac{11}{5}$),位于第四象限.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在R上定义运算:x?y=x(1-y).若关于x的不等式x?(x-a)>0的解集是集合{x|-1≤x≤1}的子集,则实数a的取值范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点A(3,4),B(2,6),向量$\overrightarrow{EF}$=(-1,λ),若$\overrightarrow{EF}$•$\overrightarrow{AB}$=0,则实数λ的值为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-ax-alnx(a∈R).
(1)当x=1时,函数f(x)取得极值,求函数的单调区间;
(2)当x∈[e,+∞)时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={0,1,2,3},集合B={x|x=ab,a,b∈A,且a≠b},则A∩B=(  )
A.{0,2,3}B.{0,1,2}C.{0,2,4}D.{0,2,3,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC的内角A、B、C对的边分别为a、b、c,$\overrightarrow m$=(sinB,5sinA+5sinC)与$\overrightarrow n$=(5sinB-6sinC,sinC-sinA)垂直.
(1)求sinA的值;
(2)若a=2$\sqrt{2}$,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{e^x}{x}$在x=1处的导数等于(  )
A.0B.1C.eD.2e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式(ax-1)(x-2)>2的解集为A,且3∉A.
(I)求实数a的取值范围;
(II)求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>0,b>0且实数x、y满足条件$\left\{\begin{array}{l}2x-y-1≤0\\ x-2y+1≥0\end{array}$.若ax+by的最大值为4,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为1.

查看答案和解析>>

同步练习册答案