精英家教网 > 高中数学 > 题目详情
13.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为(  )
A.c<a<bB.c<b<aC.b<a<cD.b<c<a

分析 a=30.2>1,利用换底公式可得:b=log64=$\frac{2}{lo{g}_{2}6}$,c=log32=$\frac{2}{lo{g}_{2}9}$,由于1<log26<log29,即可得出大小关系.

解答 解:∵a=30.2>1,b=log64=$\frac{2}{lo{g}_{2}6}$,c=log32=$\frac{1}{lo{g}_{2}3}$=$\frac{2}{lo{g}_{2}9}$,
∵1<log26<log29,∴1>b>c,
则a>b>c,
故选:B.

点评 本题考查了指数函数与对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,已知$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,且|$\overrightarrow b$|=2|$\overrightarrow a$|=2,任意点M关于点A的对称点为N,点N关于点B的对称点为P,则$\overrightarrow{MP}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$)=(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-ax-alnx(a∈R).
(1)当x=1时,函数f(x)取得极值,求函数的单调区间;
(2)当x∈[e,+∞)时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC的内角A、B、C对的边分别为a、b、c,$\overrightarrow m$=(sinB,5sinA+5sinC)与$\overrightarrow n$=(5sinB-6sinC,sinC-sinA)垂直.
(1)求sinA的值;
(2)若a=2$\sqrt{2}$,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{e^x}{x}$在x=1处的导数等于(  )
A.0B.1C.eD.2e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$不共线,且$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BA}$,则向量$\overrightarrow{OM}$=(  )
A.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$B.$\frac{2}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$C.$\frac{1}{3}$$\overrightarrow{OA}$-$\frac{2}{3}$$\overrightarrow{OB}$D.$\frac{1}{3}$$\overrightarrow{OA}$-$\frac{4}{3}$$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式(ax-1)(x-2)>2的解集为A,且3∉A.
(I)求实数a的取值范围;
(II)求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列表达式中,错误的是(  )
A.sin(α+β)=sinαcosβ+cosαsinβB.sin(α-β)=cosβsinα-sinβcosα
C.cos(α-β)=cosαcosβ-sinαsinβD.cos(α+β)=cosαcosβ-sinαsinβ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市教育局委托调查机构对本市中小学学校使用“微课掌上通”满意度情况进行调查.随机选择小学和中学各50所学校进行调查,调查情况如表:
评分等级☆☆☆☆☆☆☆☆☆☆☆☆☆☆
小学2792012
中学3918128
(备注:“☆”表示评分等级的星级,例如“☆☆☆”表示3星级.)
(1)从评分等级为5星级的学校中随机选取两所学校,求恰有一所学校是中学的概率;
(2)规定:评分等级在4星级以上(含4星)为满意,其它星级为不满意.完成下列2×2列联表并帮助判断:能否在犯错误的概率不超过0.05的前提下认为使用是否满意与学校类别有关系?
学校类型满意不满意总计
小学50
中学50
总计100

查看答案和解析>>

同步练习册答案