| 评分等级 | ☆ | ☆☆ | ☆☆☆ | ☆☆☆☆ | ☆☆☆☆☆ |
| 小学 | 2 | 7 | 9 | 20 | 12 |
| 中学 | 3 | 9 | 18 | 12 | 8 |
| 学校类型 | 满意 | 不满意 | 总计 |
| 小学 | 50 | ||
| 中学 | 50 | ||
| 总计 | 100 |
分析 (1)由古典概型公式,分别求得从5星级的20所学校中随机选取2所总事件个数m及恰有1所学校是中学的事件个数n,P=$\frac{m}{n}$=$\frac{3}{5}$,代入即可求得x和y的值;
(2)根据所给数据,可得2×2列联表,求出K2,与临界值比较,在犯错误的概率不超过0.05的前提下认为使用满意与学校类型有关系.
解答 解:(1)因为从5星级的20所学校中随机选取2所,共有${C}_{20}^{2}$=190种结果,…(1分);
其中恰有1所学校是中学的共有${C}_{12}^{1}$•${C}_{8}^{1}$=96种结果,…(2分);
故所求概率为P=$\frac{96}{190}$=$\frac{48}{95}$; …(4分);
(2)由2×2列联表:
| 学校类型 | 满意 | 不满意 | 总计 |
| 小学 | 32 | 18 | 50 |
| 中学 | 20 | 30 | 50 |
| 总计 | 52 | 48 | 100 |
点评 本题考查古典概型概率公式,列联表,独立性检验的方法等知识,考查了学生处理数据和运算求解的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | c<b<a | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{9}{8}$,2] | B. | [$\frac{3}{4}$,+∞) | C. | [$\frac{3}{4}$,2] | D. | (0,$\frac{3}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com