精英家教网 > 高中数学 > 题目详情
14.求函数y=-tan($\frac{π}{2}$x-$\frac{π}{6}$)的定义域、周期和单调区间.

分析 根据正切函数的定义、图象与性质,求出函数f(x)的周期、定义域和单调减区间.

解答 解:函数y=-tan($\frac{π}{2}$x-$\frac{π}{6}$),
∴f(x)的周期为:$T=\frac{π}{{\frac{π}{2}}}=2$;…(2分)
要使函数解析式有意义,必须
$\frac{π}{2}x-\frac{π}{6}≠kπ+\frac{π}{2},k∈Z$,…(4分)
即$\frac{π}{2}x≠kπ+\frac{2π}{3},k∈Z$,
解得$x≠2k+\frac{4}{3},k∈Z$;
∴f(x)的定义域为:$\left\{{x\left|{x≠2k+\frac{4}{3},k∈Z}\right.}\right\}$;…(6分)
函数值y随着x的增加而减小,函数f(x)只有减区间无增区间,
令$kπ-\frac{π}{2}<\frac{π}{2}x-\frac{π}{6}<kπ+\frac{π}{2},k∈Z$; …(8分)
得$kπ-\frac{π}{3}<\frac{π}{2}x<kπ+\frac{2π}{3},k∈Z$,
得:$2k-\frac{2}{3}<x<2k+\frac{4}{3},k∈Z$,
∴函数f(x)的减区间为:$(2k-\frac{2}{3},2k+\frac{4}{3}),k∈Z$.…(10分)

点评 本题考查了正切函数的定义、图象与性质的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-ax-alnx(a∈R).
(1)当x=1时,函数f(x)取得极值,求函数的单调区间;
(2)当x∈[e,+∞)时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式(ax-1)(x-2)>2的解集为A,且3∉A.
(I)求实数a的取值范围;
(II)求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列表达式中,错误的是(  )
A.sin(α+β)=sinαcosβ+cosαsinβB.sin(α-β)=cosβsinα-sinβcosα
C.cos(α-β)=cosαcosβ-sinαsinβD.cos(α+β)=cosαcosβ-sinαsinβ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.sin$\frac{π}{8}$cos$\frac{π}{8}$等于(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若非零向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=$\frac{{2\sqrt{2}}}{3}$|${\overrightarrow b}$|,且($\overrightarrow a$-$\overrightarrow b$)⊥(3$\overrightarrow a$+2$\overrightarrow b$),则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.πB.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>0,b>0且实数x、y满足条件$\left\{\begin{array}{l}2x-y-1≤0\\ x-2y+1≥0\end{array}$.若ax+by的最大值为4,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市教育局委托调查机构对本市中小学学校使用“微课掌上通”满意度情况进行调查.随机选择小学和中学各50所学校进行调查,调查情况如表:
评分等级☆☆☆☆☆☆☆☆☆☆☆☆☆☆
小学2792012
中学3918128
(备注:“☆”表示评分等级的星级,例如“☆☆☆”表示3星级.)
(1)从评分等级为5星级的学校中随机选取两所学校,求恰有一所学校是中学的概率;
(2)规定:评分等级在4星级以上(含4星)为满意,其它星级为不满意.完成下列2×2列联表并帮助判断:能否在犯错误的概率不超过0.05的前提下认为使用是否满意与学校类别有关系?
学校类型满意不满意总计
小学50
中学50
总计100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示的七面体是由三棱台ABC-A1B1C1和四棱锥D-AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面⊥ABCD,BB1=2A1B1=2.
(1)求证:平面AA1C1C⊥平面BB1D;
(2)求二面角A一A1D一C1的余弦值.

查看答案和解析>>

同步练习册答案