| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 随机变量ξ~B(5,$\frac{3}{4}$),P(ξ=k)=${C}_{5}^{k}•(\frac{3}{4})^{5-k}•(\frac{1}{4})^{k}$,由式子的意义知:概率最大也就是ξ最可能的取值.这和期望的意义接近.由Eξ=5×$\frac{3}{4}$=3.75,知k=4是极值,由此能求出p(ξ=k)取最大值时k的值.
解答 解:由题意,随机变量ξ~B(5,$\frac{3}{4}$),
∴P(ξ=k)=${C}_{5}^{k}•(\frac{3}{4})^{5-k}•(\frac{1}{4})^{k}$,
由式子的意义知:概率最大也就是ξ最可能的取值.这和期望的意义接近.
∵Eξ=5×$\frac{3}{4}$=3.75,
∴k=4是极值,
∴P(ξ=k)取最大值时k的值是4.
故选:C.
点评 本题考查二项分布的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若最小二乘法原理下得到的回归直线方程$\widehat{y}$=0.52x+$\widehat{a}$,则y与x具有正相关关系 | |
| B. | 残差平方和越小的模型,拟合的效果越好 | |
| C. | 在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适 | |
| D. | 用相关指数R2来刻画回归效果,R2越小说明拟合效果越好 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 评分等级 | ☆ | ☆☆ | ☆☆☆ | ☆☆☆☆ | ☆☆☆☆☆ |
| 小学 | 2 | 7 | 9 | 20 | 12 |
| 中学 | 3 | 9 | 18 | 12 | 8 |
| 学校类型 | 满意 | 不满意 | 总计 |
| 小学 | 50 | ||
| 中学 | 50 | ||
| 总计 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15$\sqrt{2}$ | B. | 15 | C. | 31$\sqrt{2}$ | D. | 31 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若函数f(x)是定义在R上的偶函数,则b=±1 | |
| B. | 若函数f(x)是定义在R上的奇函数,则b=1 | |
| C. | 若b=-1,则函数f(x)是定义在R上的增函数 | |
| D. | 若b=-1,则函数f(x)是定义在R上的减函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com