精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
x2-4
(x<-2)

(Ⅰ)求f -1(x);
(Ⅱ)若a1=1,
1
an+1
=-f-1(an)
(n∈N+),求an
(Ⅲ)设bn=an+12+an+22+…+a2n+12,是否存在最小的正整数k,使对于任意n∈N+有bn
k
25
成立. 若存在,求出k的值;若不存在,说明理由.
分析:(1)先求出函数的值域,原函数的值域是反函数的定义域,然后根据反函数的求解步骤进行解题即可;
(2)根据条件推出{
1
an2
}是以
1
a12
=1为首项,以4为公差的等差数列,从而求出通项公式an
(3)分别表示出bn+1,bn,然后将两者作差,判定符号,从而确定数列{bn}的单调性,根据单调性可知bnb1=
14
45
(n∈N*)
,要使bn
k
25
14
45
k
25
,所以k>
70
9
又k∈N*即k≥8,从而求出k的最小值.
解答:解:(1)∵f(x)=
1
x2-4
(x<-2)
∴f(x)>0∴f-1(x)=-
4x2+1
x
(x>0)

(2)∴
1
an+1
=
4an2+1
an
(an>0)
1
an+12
=
1
an2
+4

∴{
1
an2
}是以
1
a12
=1为首项,以4为公差的等差数列、
1
an2
=4n-3
an=
1
4n-3
(n∈N*)

(3)∴bn=an+12+an+22+…+a2n+12=
1
4n+1
+
1
4n+5
+…+
1
8n+1
bn+1=
1
4n+5
+
1
4n+9
+…+
1
8n+9

bn+1-bn=
1
8n+5
+
1
8n+9
-
1
4n+1
1
8n+2
+
1
8n+2
-
1
4n+1
=0

∴bn+1<bn∴{bn}是一单调递减数列.∴bnb1=
14
45
(n∈N*)

要使bn
k
25
14
45
k
25
k>
70
9
又k∈N*∴k≥8∴kmin=8
即存在最小的正整数k=8,使得bn
k
25
点评:本题主要考查了反函数,数列的通项以及恒成立问题,是一道数列与函数的综合题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案