精英家教网 > 高中数学 > 题目详情

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.

(1)详见试题解析;(2)

解析试题分析:(1)证明线线垂直,可转化为证明线面垂直.要证,只要证平面,由已知平面ACEF⊥平面ABCD,故由面面垂直的性质定理知,只要证.在等腰梯形ABCD中,由已知条件及平面几何相关知识易得;(2)连结,再连结EM,FM,易知四边形为菱形,∴DM⊥AC,注意到平面平面,故DM⊥平面.于是,即为直线DE与平面ACEF所成的角.在中由锐角三角函数可求得的长,再在中由锐角三角函数即可求得的余弦值.
试题解析:(1)证明:在等腰梯形ABCD中,∵AD=DC=CB=AB,∴AD、BC为腰,取AB得中点H,连CH,易知,四边形ADCH为菱形,则CH=AH=BH,故△ACB为直角三角形,.              3分
平面平面,且平面平面平面,而平面,故.                               6分
(2)连结,再连结EM,FM,易知四边形为菱形,∴DM⊥AC,注意到平面平面,故DM⊥平面.于是,即为直线DE与平面ACEF所成的角.                                          9分

设AD=DC=BC=,则MD=.依题意,,在中,,∵=AM,四边形AMEF为平行四边形,.                 12分
考点:1.空间垂直关系的证明;2.空间角的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图五面体中,四边形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分别为AE、BD、EF的中点.

(1)求证:PQ∥平面BCE;
(2)求证:AM⊥平面ADF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:a、b、c、d是不共点且两两相交的四条直线,求证:a、b、c、d共面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,

求证:(1)MN∥平面CDD1C1.
(2)平面EBD∥平面FGA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形ABCD中,ADBC,∠ADC=90°,BABC.把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图2所示.点EF分别为棱PCCD的中点.
 
(1)求证:平面OEF∥平面APD
(2)求证:CD⊥平面POF
(3)在棱PC上是否存在一点M,使得MPOCF四点距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,侧面AA1C1C是正方形, E是的中点,F是棱CC1上的点.

(1)当时,求正方形AA1C1C的边长;
(2)当A1F+FB最小时,求证:AE⊥平面A1FB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在四棱锥PABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCDEF分别是线段ABBC的中点.

(1)证明:PFFD
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD
(3)若PB与平面ABCD所成的角为45°,求二面角APDF的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面底面,且△PAD为等腰直角三角形,,E、F分别为PC、BD的中点.

(1)求证:EF//平面PAD;
(2)求证:平面平面 .

查看答案和解析>>

同步练习册答案