精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面底面,且△PAD为等腰直角三角形,,E、F分别为PC、BD的中点.

(1)求证:EF//平面PAD;
(2)求证:平面平面 .

详见解析

解析试题分析:(1)要证//平面,可证明与平面内的一条直线平行,边结由中位线定理得这条直线就是.(2)利用面面垂直的性质可由面面垂直(侧面底面)得线面垂直(平面),进而得到线线垂直(),再结合线线垂直,又得到线面垂直平面,证明.平面平面可通过平面证明.
试题解析:(1)证明:连接
因为是正方形,的中点,所以过点,且也是 的中点,
因为的中点,所以中,是中位线,所以 
因为平面平面,所以平面
(2)因为侧面底面,
所以平面
所以
又因为,
所以平面,
因为平面,
所以面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.

(1)求直线与平面所成角的余弦值;
(2)求点到平面的距离;
(3)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,

(1)求证:;
(2)求直线与直线BD所成的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体中,,,且.

(I)求证:
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱中,,D为BC中点.

(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2.点E是线段AB上的动点,点M为D1C的中点.

(1)当E点是AB中点时,求证:直线ME‖平面ADD1 A1
(2)若二面角AD1EC的余弦值为.求线段AE的长.

查看答案和解析>>

同步练习册答案