精英家教网 > 高中数学 > 题目详情

如图,在几何体中,,,且.

(I)求证:
(II)求二面角的余弦值.

(1)证明过程详见解析;(2).

解析试题分析:本题主要考查几何体中的线线平行与垂直的判定、线面平行与垂直的判定,以及空间向量法求二面角等数学知识,考查空间想象能力和逻辑思维能力,考查基本计算能力.第一问,利用已知的边长,得出相似,从而得到垂直,利用面面垂直的性质定理得,作出辅助线,通过条件可得,最后利用线面平行的判定证明平面;第二问,利用已知的垂直关系,建立如图的空间直角坐标系,写出各点的坐标,关键是求出平面和平面的法向量,利用夹角公式求出余弦值.
试题解析:(I)
    ,
过点,垂足为,则,且,     2分
,交,过,连结
,∴,∴四边形是平行四边形,

        6分

(II)如图建立空间直角坐标系,则

A(0,0,0),B(2,0,0),D(0,2,0),E(0,0,2),
C(1,1,),=(0,﹣2,2),=(1,﹣1,),   8分
设平面CDE的一个法向量为=(x,y,z),
则有,则﹣2y+2z=0,x﹣y+z=0,
取z=2,则y=2,x=0,所以=(0,2,2),       10分
平面AEC的一个法向量为=(﹣2,2,0),      11分
故cos<>=                           12分
考点:1.相似三角形;2.线面垂直的判定;3.线面平行的判定;4.空间向量法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥平面ABC,△ABC为正三角形,侧面AA1C1C是正方形, E是的中点,F是棱CC1上的点.

(1)当时,求正方形AA1C1C的边长;
(2)当A1F+FB最小时,求证:AE⊥平面A1FB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,.

(1)求直线与平面所成角的正弦值;
(2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面底面,且△PAD为等腰直角三角形,,E、F分别为PC、BD的中点.

(1)求证:EF//平面PAD;
(2)求证:平面平面 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形所在的平面与正方形所在的平面相互垂直,的中点.

(1)求证:∥平面
(2)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的菱形中,,点分别是的中点,将分别沿折起,使两点重合于点.
                                          (1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,垂直圆所在的平面,是圆上的点.

(1)求证:平面
(2)设的中点,的重心,求证://平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为梯形,, 平面,的中点

(Ⅰ)证明:
(Ⅱ)若,求二面角的余弦值

查看答案和解析>>

同步练习册答案