【题目】已知函数f(x)=ex﹣ax,(e为自然对数的底数). (Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对任意实数x恒有f(x)≥0,求实数a的取值范围.
【答案】解:(Ⅰ)f(x)=ex﹣ax,f′(x)=ex﹣a, 当a≤0时,f′(x)>0,则f(x)在R上单调递增;
当a>0时,令f′(x)=ex﹣a=0,得x=lna,
则在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增;
(Ⅱ)由f(x)=ex﹣ax,f'(x)=ex﹣a,
若a<0,则f'(x)>0,函数f(x)单调递增,
当x趋近于负无穷大时,f(x)趋近于负无穷大;
当x趋近于正无穷大时,f(x)趋近于正无穷大,
故a<0不满足条件.
若a=0,f(x)=ex≥0恒成立,满足条件.
若a>0,由f'(x)=0,得x=lna,
当x<lna时,f'(x)<0;当x>lna时,f'(x)>0,
所以函数f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,
所以函数f(x)在x=lna处取得极小值f(lna)=elna﹣alna=a﹣alna,
由f(lna)≥0得a﹣alna≥0,
解得0<a≤e.
综上,满足f(x)≥0恒成立时实数a的取值范围是[0,e]
【解析】(Ⅰ)求出函数的导数,通过讨论a得到范围,求出函数的单调区间即可;(Ⅱ)由f(x)=ex﹣ax﹣a,f'(x)=ex﹣a,从而化恒成立问题为最值问题,讨论求实数a的取值范围.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】现有一圆心角为 ,半径为12cm的扇形铁皮(如图).P,Q是弧AB上的动点且劣弧 的长为2πcm,过P,Q分别作与OA,OB平行或垂直的线,从扇形上裁剪出多边形OHPRQT,将该多边形面积表示为角α的函数,并求出其最大面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=1+x﹣ + ﹣ +…+ ;g(x)=1﹣x+ ﹣ + ﹣…﹣ ;设函数F(x)=[f(x+3)]2015[g(x﹣4)]2016 , 且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为( )
A.8
B.9
C.10
D.11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1 , x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f( )的所有x的和为( )
A.﹣3
B.﹣5
C.﹣8
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校高一年级1000名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米到195厘米之间,将测量结果分为八组:第一组[155,160),第二组[160,165),…,第八组[190,195),得到频率分布直方图如图所示. (Ⅰ)计算第三组的样本数;并估计该校高一年级1000名学生中身高在170厘米以下的人数;
(Ⅱ)估计被随机抽取的这100名学生身高的中位数、平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一个容量为100的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少12,则实数m的值等于( )
A.0.10
B.0.11
C.0.12
D.0.13
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴交于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形
(1)求C的方程
(2)延长AF交抛物线于点E,过点E作抛物线的切线l1 , 求证:l1∥l.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体OABCD,AB=CD=2,AD=BC= ,AC=BD= ,且OA,OB,OC两两垂直,则下列说法正确的是( )
A.直线OB∥平面ACD
B.球面经过点A,B,C,D四点的球的直径是
C.直线AD与OB所成角是45°
D.二面角A﹣OC﹣D等于30°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com