精英家教网 > 高中数学 > 题目详情

【题目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,则log2(a1+a3+…+a11)=( ).

A. 4B. 8C. 12D. 11

【答案】D

【解析】

只需分别令x=﹣2x=﹣4,得到的两个表达式解方程组,即可求出a1+a3+a5++a11的值,然后求出结果.

: x=﹣2时,x+31.等式化为:(﹣2428a0+a1+a2++a12

a0+a1+a2++a12

x=﹣4时,x+3=﹣1.等式化为:(﹣44080a0a1+a2a3++a12

上述①②两等式相相减有:a1+a3++a11+0)=

log2a1+a3++a11)=

故答案为:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

合计

男生

5

女生

10

合计

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为“喜爱打篮球与性别有关”?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:

年龄

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人数

4

5

8

5

3

年龄

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人数

6

7

3

5

4

经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.

(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;

(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月9-25日第23届冬奥会在韩国平昌举行.4年后第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

收看

没收看

男生

60

20

女生

20

20

(Ⅰ)根据上表说明,能否有的把握认为收看开幕式与性别有关?

(Ⅱ)现从参与问卷调查且收看了开幕式的学生中采用按性别分层抽样的方法选取8人参加2022年北京冬奥会志愿者宣传活动.

(ⅰ)问男女学生各选取多少人?

(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于,若数列满足,则称这个数列为“K数列”.

(Ⅰ)已知数列:1m+1m2是“K数列”,求实数的取值范围;

(Ⅱ)是否存在首项为-1的等差数列为“K数列”,且其前n项和满足

?若存在,求出的通项公式;若不存在,请说明理由;

(Ⅲ)已知各项均为正整数的等比数列是“K数列”,数列不是“K数列”,若,试判断数列是否为“K数列”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点坐标为

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,

(1)求证:数列是等比数列

(2)求数列的通项公式

(3)设,若对任意,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.

如图,在阳马中,侧棱底面,且,过棱的中点,作于点,连接

)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写

出结论);若不是,说明理由;

)若面与面所成二面角的大小为,求的值.

查看答案和解析>>

同步练习册答案