【题目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,则log2(a1+a3+…+a11)=( ).
A. 4B. 8C. 12D. 11
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为“喜爱打篮球与性别有关”?说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人数 | 4 | 5 | 8 | 5 | 3 |
年龄 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人数 | 6 | 7 | 3 | 5 | 4 |
经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;
(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根据上表说明,能否有的把握认为,收看开幕式与性别有关?
(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.
(ⅰ)问男、女学生各选取多少人?
(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于,若数列满足,则称这个数列为“K数列”.
(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数的取值范围;
(Ⅱ)是否存在首项为-1的等差数列为“K数列”,且其前n项和满足
?若存在,求出的通项公式;若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列是“K数列”,数列不是“K数列”,若,试判断数列是否为“K数列”,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造、型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张、型型桌子分别需要1小时和2小时,漆工油漆一张、型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张、型型桌子分别获利润2千元和3千元.
(1)列出满足生产条件的数学关系式,并画出可行域;
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点坐标为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线与轴平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接
(Ⅰ)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(Ⅱ)若面与面所成二面角的大小为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com