【题目】2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根据上表说明,能否有
的把握认为,收看开幕式与性别有关?
(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.
(ⅰ)问男、女学生各选取多少人?
(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
【答案】(1)见解析;(2)(i) 男生有6人,女生有2人. (ii)
.
【解析】分析:(Ⅰ)因为
,所以有
的把握认为,收看开幕式与性别有关;(Ⅱ)(ⅰ)根据分层抽样方法得,男生
人,女生
人; (ⅱ)从
人中,选取
人的所有情况共有
种,其中恰有一名男生一名女生的情况共有
种,由古典概型概率公式可得结果.
详解:(Ⅰ)因为
,
所以有
的把握认为,收看开幕式与性别有关.
(Ⅱ)(ⅰ)根据分层抽样方法得,
男生
人,女生
人,
所以选取的8人中,男生有6人,女生有2人.
(ⅱ)从8人中,选取2人的所有情况共有N=7+6+5+4+3+2+1=28种,
其中恰有一名男生一名女生的情况共有M=6+6=12种,
所以,所求概率
.
科目:高中数学 来源: 题型:
【题目】如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若曲线
在
处的切线与直线
垂直,求实数
的值;
(2)设
,若对任意两个不等的正数
,都有
恒成立,求实数
的取值范围;
(3)若
上存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形内角和是
归纳出所有三角形的内角和都是
;③由
,满足
,
,推出
是奇函数;
④三角形内角和是
,四边形内角和是
,五边形内角和是
,由此得凸多边形内角和是
.
A. ①②B. ①③④C. ②④D. ①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)
A. 4.56%B. 13.59%C. 27.18%D. 31.74%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,则log2(a1+a3+…+a11)=( ).
A. 4B. 8C. 12D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥A﹣BCD中,BCD是边长为
的等边三角形,
,二面角A﹣BC﹣D的大小为θ,且
,则三棱锥A﹣BCD体积的最大值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com