【题目】在三棱锥A﹣BCD中,BCD是边长为
的等边三角形,
,二面角A﹣BC﹣D的大小为θ,且
,则三棱锥A﹣BCD体积的最大值为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根据上表说明,能否有
的把握认为,收看开幕式与性别有关?
(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.
(ⅰ)问男、女学生各选取多少人?
(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是偶函数,且满足
,当
时,
,当
时,
的最大值为
.
(1)求实数
的值;
(2)函数
,若对任意的
,总存在
,使不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马
中,侧棱
底面
,且
,过棱
的中点
,作
交
于点
,连接![]()
![]()
(Ⅰ)证明:
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(Ⅱ)若面
与面
所成二面角的大小为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线
的直角坐标方程为
,
,消去参数
可知曲线
是圆心为
,半径为
的圆,由直线
与曲线
相切,可得:
;则曲线C的方程为
, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(
),
,(
),
,
,
由此可求
面积的最大值.
试题解析:(1)由题意可知直线
的直角坐标方程为
,
曲线
是圆心为
,半径为
的圆,直线
与曲线
相切,可得:
;可知曲线C的方程为
,
所以曲线C的极坐标方程为
,
即
.
(2)由(1)不妨设M(
),
,(
),
,
![]()
,
当
时,
,
所以△MON面积的最大值为
.
【题型】解答题
【结束】
23
【题目】已知函数
的定义域为
;
(1)求实数
的取值范围;
(2)设实数
为
的最大值,若实数
,
,
满足
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们2018年10月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5组:[10,12),[12,14),[14,16),[16,18),[18,20],得到如图所示的频率分布直方图.
![]()
(Ⅰ)试估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数;
(Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[18,20],现从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;
(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生2018年10月课外阅读时间的平均数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com