【题目】某运输公司有名驾驶员和名工人,有辆载重量为吨的甲型卡车和辆载重量为吨的乙型卡车.某天需运往地至少吨的货物,派用的车需满载且只运送一次.派用的每辆甲型卡车需配名工人,运送一次可得利润元:派用的每辆乙型卡车需配名工人,运送一次可得利润元,该公司合理计划当天派用两类卡车的车辆数,可得的最大利润多少?
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若上恰有2个点到的距离等于,求的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的面积为,且与轴、轴分别交于两点.
(1)求圆的方程;
(2)若直线与线段相交,求实数的取值范围;
(3)试讨论直线与(1)小题所求圆的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值;
(2)设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义,两点间的“直角距离”为:.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标.(格点指横、纵坐标均为整数的点)
(2)求到两定点、的“直角距离”和为定值的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.(在以下三个条件中任选一个做答)
①,,;
②,,;
③,,.
(3)写出同时满足以下两个条件的“格点”的坐标,并说明理由(格点指横、纵坐标均为整数的点).
①到,两点“直角距离”相等;
②到,两点“直角距离”和最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱长为2,M,N分别为A1B,AC的中点.
(1)证明:MN//B1C;
(2)求A1B与平面A1B1CD所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中,为的中点,将沿直线翻折成,连结,为的中点,则在翻折过程中,下列说法中所有正确的序号是_______.
①存在某个位置,使得;
②翻折过程中,的长是定值;
③若,则;
④若,当三棱锥的体积最大时,三棱锥的外接球的表面积是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆:与圆:相切,并且椭圆上动点与圆上动点间距离最大值为.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线,,与交于两点,与圆的另一交点为,求面积的最大值,并求取得最大值时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com