| A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | x2-$\frac{{y}^{2}}{3}$=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 |
分析 确定抛物线的焦点坐标,双曲线的渐近线方程,利用抛物线C1:y=$\frac{1}{4}$x2的焦点F到双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的距离为$\frac{\sqrt{3}}{2}$,可得$\frac{b}{c}$=$\frac{\sqrt{3}}{2}$,再利用抛物线的定义,结合抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=-1的距离之和的最小时为$\sqrt{5}$,可得c2+1=5,从而可求双曲线的几何量,可得结论.
解答 解:抛物线C1:y=$\frac{1}{4}$x2的焦点F(0,1),双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为bx-ay=0,
∵抛物线C1:y=$\frac{1}{4}$x2的焦点F到双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的距离为$\frac{\sqrt{3}}{2}$,
∴$\frac{b}{c}$=$\frac{\sqrt{3}}{2}$,
∵直线y=-1是抛物线的准线,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=-1的距离之和的最小时为$\sqrt{5}$,
∴根据抛物线的定义可知,当P,F及双曲线C2的一个焦点三点共线时最小,
∴c2+1=5,
∴c=2,
∵c2=a2+b2,
∴b=$\sqrt{3}$,a=1,
∴双曲线的方程为x2-$\frac{{y}^{2}}{3}$=1.
故选:B.
点评 本题主要考查了抛物线、双曲线的几何性质,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | 4 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 满意度得分 | [0,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 人数 | 0 | 2 | 9 | 26 | 52 | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1)(2)(3) | B. | (1)(3)(5) | C. | (2)(4)(5) | D. | (1)(3)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com