精英家教网 > 高中数学 > 题目详情
17.已知2a-3b=4,2c-3d=4(a≠c),则经过点A(a,b)和B(c,d)的直线的一般式方程是2x-3y-4=0.

分析 可设方程为y=kx+m,由已知数据易得k=$\frac{2}{3}$,代入b=ka+m可得b=$\frac{2}{3}$a+m,由2a-3b=4可得b=$\frac{2}{3}$a-$\frac{4}{3}$,两式比较可得m值,可得直线方程.

解答 解:∵a≠c,∴直线有斜率,故可设方程为y=kx+m,
∵直线经过点A(a,b)和B(c,d),
∴b=ka+m,d=kc+m,∴b-d=k(a-c),
∵2a-3b=4,2c-3d=4,
∴两式相减可得2(a-c)=3(b-d),
∴k=$\frac{2}{3}$,代入b=ka+m可得b=$\frac{2}{3}$a+m,
由2a-3b=4可得b=$\frac{2a-4}{3}$=$\frac{2}{3}$a-$\frac{4}{3}$,∴m=-$\frac{4}{3}$,
∴直线方程为y=$\frac{2}{3}$x-$\frac{4}{3}$,即2x-3y-4=0,
故答案为:2x-3y-4=0.

点评 本题考查直线的一般式方程,涉及直线的斜率公式和斜截式方程,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}、{bn}满足am+an=am+n,bn•bm=bn+m(m、n∈N),若a1=1,则an=n,若b1=2,则bn=2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线x+y+t=0与圆x2+y2=2相交于M、N两点,已知O是坐标原点,若|$\overrightarrow{OM}$+$\overrightarrow{ON}$|≤|$\overrightarrow{MN}$|,则实数t的取值范围是(  )
A.(-∞,-$\sqrt{2}$)∪[$\sqrt{2}$,+∞)B.[-2,2]C.[-2,-$\sqrt{2}$]∪[$\sqrt{2}$,2]D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,抛物线C:y2=2px(p>0)的焦点F(1,0)
(1)写出抛物线C的方程
(2)设过点(3,0)的直线l交抛物线C于M,N两点,试求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知凼数y=Asin(ωx+$\frac{π}{4}$)(A>0,ω>0)的周期为π,最大值为3,则A=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.点P在⊙O:x2+y2=r2(r>0)外的充要条件是|OP|>r:将此结论类比到椭圆,若椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的焦点分别为F1,F2,则点Q在椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$外的充要条件是|PF1|+|PF2|>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三角形ABC的面积为1,tanB=$\frac{1}{2}$,tanC=-2,求三角形ABC的各边长及外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点A,B在双曲线$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}$=1上,且线段AB经过原点,点M为圆x2+(y-2)2=1上的动点,则$\overrightarrow{MA}•\overrightarrow{MB}$的最大值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知{an}是等差数列,且a1=1,a1+a2+a3=6,令bn=an•2n,求{bn}的前n项的和Tn

查看答案和解析>>

同步练习册答案