精英家教网 > 高中数学 > 题目详情
(2011•自贡三模)己知函数f(x)=
x-4
x+1
(x≠-1)的反函数是f-1(x
),设数列{an}的前n项和为Sn,对任意的正整数n,都有{an}=
6f-1(Sn)-19
f-1(Sn)+1
成立,且bn=f-1(an
(I)求数列{an}与数列{bn}的通项公式
(II)设数列{bn}的前n项是否存在使得Rn≥4k成立?若存在,找出一个正整数k:若不存在,请说明理由
(III)记cn=b2n-b2n-1(n∈N),设数列{cn}的前n项和为Tn,求证:对任意正整数n都有Tn
3
2
分析:(I)先根据题意求出an与Sn的关系,然后利用递推关系进行化简变形得到数列{an}是首项为a1=-
1
4
,公比为q=-
1
4
的等比数列,从而求出数列{an}与数列{bn}的通项公式;
(II)当n为偶数时,设n=2m(m∈N*),Rn=(b1+b2)+(b3+b4)+…+(b2m-1+b2m)<8m+4n,当n为奇数时,设n=2m-1(m∈N*),则Rn=(b1+b2)+(b3+b4)+…+(b2m-3+b2m-2)+b2m-1=8m-4=4n,从而对于一切的正整数n,都有Rn<4k则不存在正整数k,使得Rn≥4k成立;
(III)根据bn的通项公式,计算出cn的通项公式,再比较Tn
3
2
的大小.
解答:解:(Ⅰ)根据题意得,f-1(x)=
x+4
1-x
(x≠1)

于是由an=
6f-1(sn) -19
f-1(sn) +1
得,an=5Sn+1,
当n=1时,a1=5s1+1∴a1=-
1
4

又∵an=5sn+1an+1=5an+1+1∴an+1-an=5an+1
an+1
an
=-
1
4

∴数列{an}是首项为a1=-
1
4
,公比为q=-
1
4
的等比数列,∴an=(-
1
4
)
n

bn=
4+(-
1
4
)
n
1-(-
1
4
)
n
(n∈N*)              
(Ⅱ)不存在正整数k,使得Rn≥4k成立.
证明:由(I)知bn=
4+(-
1
4
)
n
1-(-
1
4
)
n
=4+
5
(-4)n-1

∵b2k-1+b2k=8+
5
(-4)2k-1-1
+
5
(-4)2k-1
=8+
5
16k-1
-
20
16k+4
=8-
15×16k-40
(16k-1)(16k+4) 
<8
∴当n为偶数时,设n=2m(m∈N*
∴Rn=(b1+b2)+(b3+b4)+…+(b2m-1+b2m)<8m+4n
当n为奇数时,设n=2m-1(m∈N*
∴Rn=(b1+b2)+(b3+b4)+…+(b2m-3+b2m-2)+b2m-1=8m-4=4n
∴对于一切的正整数n,都有Rn<4k∴不存在正整数k,使得Rn≥4k成立. 
(Ⅲ)∵cn=b2n-b2n-1=[4+
5
(-4)2n-1
]
-[4+
5
(-4)2n-1-1
]
=
5
16n-1
+
20
16n+4
=
25×16n
(16n-1)( 16n+4)
(n∈N),
b1=3,b2=
13
3
,∴c2=
4
3
,当n=1时,T1
3
2

当n≥2时,
Tn
4
3
+25×(
1
162
+
1
163
+…+
1
16n
)=
4
3
+25×
1
162
[1-(
1
16
)
n-2
]
1-
1
16

4
3
+25×
1
162
1-
1
16
=
69
48
3
2
点评:本题是一个综合性很强的题目,主要考查了数列与函数的综合应用以及反函数和数列不等式的综合应用,属于难题,同时考查了计算能力,分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•自贡三模)把函数g(x)=sinx(x∈R)按向量
a
=(
π
2
,0)平移后得到函数f(x),下面结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)设A(x,1)、B (2,y)、C (4,5)为坐标平面上三点,O为坐标原点,满足条件:|
AB
+
OC
|=|
AB
-
OC
|的动点(x,y)的轨迹方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)函数f(x)=-x3-8x2-7x+5的图象在X=-1处的切线斜率为k,则(2x-
12x
k的展开式的常数项是
-20
-20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆叙道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2cl和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有a1-c1=a2-c2
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若a∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

⑤函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2.
其中所有真命题的代号有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)已知函数,y=f(x)=-x3+ax2+b(a,b∈R)
(Ⅰ)要使f(x)在(0,1)上单调递增,求a的取值范围;
(Ⅱ)当a>0时,若函数f(x)的极小值和极大值分别为1、
31
27
,试求函数y=f(x)的解析式;
(Ⅲ)若x∈[0,1]时,y=f(x)图象上任意一点处的切线倾斜角为θ,当0≤θ≤
π
4
.时,求a的取值范围.

查看答案和解析>>

同步练习册答案