精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
|lg(-x)|,x<0
x3-6x+4,x≥0
若关于x的函数y=f2(x)-bf(x)+1有8个不同的零点,则实数b的取值范围是(  )
分析:方程2f2(x)+2bf(x)+1=0有8个不同实数解,即要求对应于f(x)等于某个常数k,有2个不同的k,再根据函数
对应法则,每一个常数可以找到4个x与之对应,就出现了8个不同实数解故先根据题意作出f(x)的简图:由图可知,
只有满足条件的k在开区间(0,4]时符合题意.再根据一元二次方程根的分布的理论可以得出答案.
解答:解:∵函数f(x)=
|lg(-x)|,x<0
x3-6x+4 = (x-2)(x2+2x-2),x≥0
,作出f(x)的简图,如图所示:
由图象可得当f(x)在(0,4]上任意取一个值时,都有四个不同的x与f(x)的值对应.
再结合题中函数y=f2(x)-bf(x)+1 有8个不同的零点,
可得关于k的方程 k2 -bk+1=0有两个不同的实数根k1、k2,且0<k1≤4,0<k2≤4.
∴应有
△ =b2-4>0
0<
b
2
<4
0-b×0+1>0
16-4b+1≥0
,解得 2<b≤
17
4

故选D.
点评:本题考查了函数的图象与一元二次方程根的分布的知识,采用数形结合的方法解决,使本题变得易于理解.数形结合
是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合
的方法,很多问题便迎刃而解,且解法简捷,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案