精英家教网 > 高中数学 > 题目详情
2.现安排甲、乙、丙、丁、戊5名同学参加某志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有1人参加.甲不会开车但能从事其他三项工作,乙、丙、丁、戊都能胜任四项工作,则不同安排方案的种数为180.

分析 根据题意,先安排甲,再考虑乙、丙、丁、戊,由分步计数原理,计算可得答案.

解答 解:根据题意,甲参加除了开车的三项工作之一:C31=3种;
乙、丙、丁、戊从事工作均不同,有A44=24种,
乙、丙、丁、戊均不从事司机工作,有C42×A33=36种
由分步计数原理,可得共有3×(24+36)=180种,
故答案为:180.

点评 本题考查排列、组合的综合运用,注意要根据题意,进而按一定顺序分情况讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且an>0,an+$\frac{1}{{a}_{n}}$=2Sn,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆x2+(y-1)2=1,在圆上任意一点P(x,y),有x+y+m≥0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:函数f(x)=$\frac{ax}{{x}^{2}-1}$(a>0)在(-1,1)内单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若cos(45°-x)=-$\frac{4}{5}$(225°<x<315°),求$\frac{sin2x-2si{n}^{4}x}{1+tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.y=ax(a>1),若函数定义域值域都是(m,n),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(cos15°,sin15°),$\overrightarrow{b}$=(cos105°,sin105°),则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若有理数a,b,c满足2$\sqrt{a}$+2$\sqrt{b-1}$+2$\sqrt{c-2}$=a+b+c,求abc的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x),x∈R的图象关于y轴对称,且当x∈[0,1]时,f(x)=x2,同时f(x+2)=f(x),求f(x)

查看答案和解析>>

同步练习册答案