精英家教网 > 高中数学 > 题目详情

【题目】给出下列说法,正确的有__________.

①与共线单位向量的坐标是

②集合与集合是相等集合;

③函数的图象与的图象恰有3个公共点;

④函数的图象是由函数的图象水平向右平移一个单位后将所得图象在轴右侧部分沿轴翻折到轴左侧替代轴左侧部分图象并保留右侧部分而得到.

【答案】②④

【解析】

(﹣3,4)共线的单位向量有两个,判定命题①是错误的;

分析出A、B两个集合均表示奇数集,可判断②;

分别画出函数的图象与y=|x2﹣1|的图象,即可判断③;

运用函数图象平移变换和对称变换,即可判断④.

对于①,与(﹣3,4)共线的单位向量是()和(),

∴命题①错误;

②集合与集合均表示奇数集,是相等集合,故②正确;

③分别画出函数的图象与y=|x2﹣1|的图象,

可得x>1和x<﹣1时,各有一个交点;

当﹣1<x<1时,y=1﹣x2y=1+0.1x,联立可得x2+0.1x=0,

x=0或x=﹣0.1,则有两个交点;

函数的图象与y=|x2﹣1|的图象共有4个公共点,故③错误;

④函数f(|x|﹣1)的图象是由函数fx)的图象水平向右平移一个单位得到f(x-1)后,

再将所得图象在y轴右侧部分沿y轴翻折到y轴左侧替代y轴左侧部分图象,

并保留右侧部分而得到,故④正确;

综上可得①③错误;②④正确.

故答案为:②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足 .设甲合作社的投入为(单位:万元).两个合作社的总收益为(单位:万元).

(1)当甲合作社的投入为25万元时,求两个合作社的总收益;

(2)试问如何安排甲、乙两个合作的投入,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点,且与圆M关于直线对称.

求圆C的方程;

过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OPAB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了确定工效,进行了5次试验,收集数据如下:

加工零件个数

10

20

30

40

50

加工时间(分钟)

64

69

75

82

90

经检验,这组样本数据的两个变量具有线性相关关系,那么对于加工零件的个数与加工时间这两个变量,下列判断正确的是(

A. 负相关,其回归直线经过点 B. 正相关,其回归直线经过点

C. 负相关,其回归直线经过点 D. 正相关,其回归直线经过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论函数的单调性;

(2)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

(Ⅰ)若函数上存在零点,求实数的取值范围;

(Ⅱ)若函数处的切线方程为.求证:对任意的,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.

证明:平面PNB;

设点E是棱PA上一点,若平面DEM,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;

(Ⅱ)若把曲线各点的横坐标伸长到原来的倍,纵坐标变为原来的,得到曲线,求曲线的方程;

(Ⅲ)设为曲线上的动点,求点到曲线上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)

查看答案和解析>>

同步练习册答案