精英家教网 > 高中数学 > 题目详情
如图所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中点,F是DC上的点,且EF∥AD,现以EF为折痕将四边形AEFD向上折起,使平面AEFD垂直平面EBCF,连AC,DC,BA,BD,BF,

(1)求证:CB⊥平面DFB;
(2)求二面角B-AC-D的余弦值.
【答案】分析:(1)以F为坐标原点,射线FE为x轴的正半轴,射线FC为y轴的正半轴,射线FD为z轴的正半轴,建立空间直角坐标系F-xyz.利用向量法能够证明CB⊥平面DFB.
(2)求出平面CAD的法向量,求出平面CAB的法向量=(1,1,1),由此能求出二面角B-AC-D的余弦值.
解答:(本小题满分12分)
解:(1)在直角梯形ABCD中过B作BM⊥DC于M,
因∠C=45°,AB=2,AD=1,
所以MC=1,FC=2.
又因为所以折叠后平面AEFD⊥平面EBCF,且DF⊥EF,
所以DF⊥平面EBCF,…(2分)
如图,以F为坐标原点,射线FE为x轴的正半轴,射线FC为y轴的正半轴,射线FD为z轴的正半轴,
建立空间直角坐标系F-xyz.
依题意有A(1,0,1)B(1,1,0),D(0,0,1),C(0,2,0).

所以.…(4分)
即CB⊥FB,CB⊥FD.又FB∩FD=F,FB、FD?平面DFB
故CB⊥平面DFB.…(6分)
(2)依题意有
是平面CAD的法向量,

因此可取 .…(8分)
同理设m是平面CAB的法向量,则
可取.…(11分)
故二面角B-AC-D的余弦值为.…(12分)
用其它解法参照给分
点评:本题考查直线与平面垂直的证明,考查二面角的求法,解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
3
,曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)过C能否作一条直线与曲线段DE相交,且所得弦以C为中点,如果能,求该弦所在的直线的方程;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2,D是AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)求二面角G-EF-D的大小.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,点M是棱SB的中点,N是OC上的点,且ON:NC=1:3.
(1)求异面直线MN与BC所成的角;
(2)求MN与面SAB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形ABCP中,AP∥BC,AB⊥AP,AB=BC=3,AP=7,CD⊥AP,现将△PCD沿折线CD折成直二面角P-CD-A,设E,F分别是PD,BC的中点.
(Ⅰ)求证:EF∥平面PAB;
(Ⅱ)求直线BE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)如图所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中点,F是DC上的点,且EF∥AD,现以EF为折痕将四边形AEFD向上折起,使平面AEFD垂直平面EBCF,连AC,DC,BA,BD,BF,

(1)求证:CB⊥平面DFB;
(2)求二面角B-AC-D的余弦值.

查看答案和解析>>

同步练习册答案