精英家教网 > 高中数学 > 题目详情
13.△ABC的内角A,B,C的对边分别是a,b,c,已知2cosA(bcosC+ccosB)=a.
(1)求角A;
(2)若a=$\sqrt{7}$,b+c=5,求△ABC的面积.

分析 (1)由已知及正弦定理,三角函数恒等变换的应用可得2cosAsinA=sinA,从而可求cosA=$\frac{1}{2}$,结合范围A∈(0,π),即可得解A的值.
(2)由已知及余弦定理可得7=25-3bc,解得bc=6,利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(1)由已知及正弦定理可得:2cosA(sinBcosC+sinCcosB)=sinA,…2分
可得:2cosAsin(B+C)=sinA,
解得:2cosAsinA=sinA,即:cosA=$\frac{1}{2}$,…5分
由于:A∈(0,π),
所以:A=$\frac{π}{3}$…6分
(2)由已知及余弦定理可得:a2=b2+c2-2bccsoA=(b+c)2-2bc(1+cosA),…7分
因为:a=$\sqrt{7}$,b+c=5,cosA=$\frac{1}{2}$,
所以:7=25-3bc,解得:bc=6,…10分
所以:S△ABC=$\frac{1}{2}$bcsinA=$\frac{3\sqrt{3}}{2}$…12分

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x+1︳+|2x-3︳
(1)求不等式f(x)≤6 的解集;
(2)若关于x的不等式|a-1︳<f(x)的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow a$=($\sqrt{2}$,-2),$\overrightarrow b$=(sin($\frac{π}{4}$+2x),cos2x)(x∈R).设函数f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求$f(-\frac{π}{4})$的值;
(2)求f(x)的最大值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△ABC三个内角所对的边分别为a,b,c,且2a=b,∠C=60°,则∠B等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1,过右焦点F作不垂直于x轴的弦交椭圆于A,B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某小型服装厂生产一种风衣,日销售量x(件)与单价P(元)之间的关系为P=160-2x,生产x件所需成本为C(元),其中C=500+30x元,若要求每天获利不少于1300元,则日销量x的取值范围是(  )
A.20≤x≤30B.20≤x≤45C.15≤x≤30D.15≤x≤45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某城市小区有一个矩形休闲广场,AB=20米,广场的一角是半径为16米的扇形BCE绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN(宽度不计),点M在线段AD上,并且与曲线CE相切;另一排为单人弧形椅沿曲线CN(宽度不计)摆放.已知双人靠背直排椅的造价每米为2a元,单人弧形椅的造价每米为a元,记锐角∠NBE=θ,总造价为W元.
(1)试将W表示为θ的函数W(θ),并写出cosθ的取值范围;
(2)如何选取点M的位置,能使总造价W最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知一个几何体的三视图如图所示,其中正视图和侧视图都是底边长为6,腰长为10的等腰三角形,俯视图是半径为3的圆,则这个几何体的表面积是(  )
A.69πB.24πC.30πD.39π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线N1:y=ax2+bx+c与抛物线N2:y=-ax2+dx+e的顶点分别为P1(x1,y1)与P2(x2,y2),且两抛物线相交于点A(12,21)与B(28,3)(均异于顶点),则$\frac{{{x_1}+{x_2}}}{{{y_1}+{y_2}}}$=$\frac{5}{3}$.

查看答案和解析>>

同步练习册答案