精英家教网 > 高中数学 > 题目详情
精英家教网已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=
2
,则
R
r
的值为(  )
A、
2
B、
3
C、2
D、3
分析:根据切线长定理先证明∠ACB=90°,得直角三角形ABC;再由tan∠ABC=
AC
BC
=
2
,得两圆弦长的比;进一步求半径的比.
解答:解:如图,连接O2B,O1A,过点C作两圆的公切线CF,交于AB于点F,作O1E⊥AC,O2D⊥BC,
由垂径定理可证得点E,点D分别是AC,BC的中点,
由弦切角定理知,
精英家教网∠ABC=∠FCB=
1
2
∠BO2C,∠BAC=∠FCA=
1
2
∠AO1C,
∵AO1∥O2B,
∴∠AO1C+∠BO2C=180°,
∴∠FCB+∠FCA=∠ACB=90°,
即△ACB是直角三角形,
∴∠ABC=∠BO2D=∠ACO1
设∠ABC=∠BO2D=∠ACO1=β,
则有sinβ=
BC
2r
,cosβ=
AC
2R

∴tanβ=
R
r
BC
AC
=
R
r
1
tanβ

∴(tanβ)2=
R
r
=2.
故选C.
点评:本题综合性较强,综合了圆的有关知识,所以学生所学的知识要系统起来,不可单一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:如图,O1与O2外切于点P,经过O1上一点A作O1的切线交O2于B、C两点,直线AP交O2于点D,连接DC、PC.
求证:DC2=DP•DA.精英家教网

查看答案和解析>>

科目:高中数学 来源:宁夏 题型:单选题

已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=
2
,则
R
r
的值为(  )
A.
2
B.
3
C.2D.3
精英家教网

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第7章 直线与圆的方程):7.3 线性规划(解析版) 题型:解答题

已知:如图,O1与O2外切于点P,经过O1上一点A作O1的切线交O2于B、C两点,直线AP交O2于点D,连接DC、PC.
求证:DC2=DP•DA.

查看答案和解析>>

科目:高中数学 来源:2009年海南省、宁夏区高考数学试卷(文科)(解析版) 题型:选择题

已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则 的值为( )

A.
B.
C.2
D.3

查看答案和解析>>

同步练习册答案