精英家教网 > 高中数学 > 题目详情
已知:如图,O1与O2外切于点P,经过O1上一点A作O1的切线交O2于B、C两点,直线AP交O2于点D,连接DC、PC.
求证:DC2=DP•DA.精英家教网
分析:相切两圆常作的辅助线是:两圆的公切线,因此过点P作两圆的内公切线EP交AB于点F,然后证得△CDP∽△ADC,可得证.
解答:证明:过点P作两圆的内公切线EP交AB于点F,
∵FE、CA都与圆O1相切,精英家教网
∴EP=FA,
∴∠FAP=∠FPA;
∵∠FPA=∠EPA=∠DCP,
∴∠FAP=∠DCP;
∵∠PDC=∠CDA,
∴△CDP∽△ADC;
CD
AD
=
DP
CD

∴DC2=DP•DA.
点评:将圆的有关知识与三角形相似结合考查,有一定难度;命题立意:此题主要考查相切两圆的位置关系及弦切角定理,三角形相似的判定等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(1)(不等式选讲)已知函数f(x)=log2(|x-1|+|x-5|-a),当函数f(x)的定义域为R时,则实数a的取值范围为
(-∞,4)
(-∞,4)

(2)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2


(3)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
y=x+2
y=x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=
21
34

(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为
x=-1+rcosθ
y=rsinθ
为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)=2
2
.若直线l与圆C相切,求r的值.
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:1<a+b<
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.
(1)求正三棱柱的侧棱长;
(2)若M为BC1的中点,试用基向量
AA1
AB
AC
表示向量
AM

(3)求异面直线AM与BC所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,且M在第一象限,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式;
(2)求切线OM的函数解析式;
(3)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届重庆市高二上学期期中理科数学试卷 题型:解答题

已知正三棱柱ABC—A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.

⑴求正三棱柱的侧棱长.

⑵若M为BC1的中点,试用基向量表示向量

⑶求异面直线AB1与BC所成角的余弦值.

 

 

 

查看答案和解析>>

同步练习册答案