精英家教网 > 高中数学 > 题目详情
(2012•怀化二模)在锐角三角形中,a,b,c分别为角A,B,C的对边,向量
m
=(2sinB,2-cos2B),
n
=(1+sinB,-1),且
m
n

(1)求角B的大小;
(2)若b=
3
,且三角形的面积为
3
3
2
,求a+c的值.
分析:(1)根据两斜率垂直时满足的关系式,由两斜率坐标列出关系式,利用二倍角的余弦函数公式化简,整理后求出sinB的值,由B为锐角,即可确定出B的度数;
(2)由B及sinB的值,以及已知的面积,利用面积公式列出关系式,再利用余弦定理列出关系式,联立求出a+c的值即可.
解答:解:(1)∵向量
m
=(2sinB,2-cos2B),
n
=(1+sinB,-1),且
m
n

∴2sinB(1+sinB)-(2-cos2B)=0,即2sinB+2sin2B-2+cos2B=2sinB+2sin2B-2+1-2sin2B=2sinB-1=0,即sinB=
1
2

∵B为锐角,∴B=30°;
(2)∵sinB=
1
2
,b=
3
,S=
3
3
2

∴S=
1
2
acsinB=
1
4
ac=
3
3
2
,即ac=6
3
,由余弦定理得:b2=a2+c2-2accosB,即3=a2+c2-
3
ac=a2+c2-18,即a2+c2=21,
∴(a+c)2=a2+c2+2ac=21+12
3

则a+c=
21+12
3
=2
3
+3.
点评:本题考查了正弦、余弦定理,平面向量的数量积运算法则,熟练掌握定理及法则是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•怀化二模)在可行域
y≥
3
x
x≥0
x+y≤2
内任取一点P(x,y),则点P满足x2+y2≤1的概率是
3
+1
24
π
3
+1
24
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)一次数学考试后,对高三文理科学生进行抽样调查,调查其对本次考试的结果满意或不满意,现随机抽取100名学生的数据如下表所示:
满意 不满意 总计
文科 22 18 40
理科 48 12 60
总计 70 30 100
(1)根据数据,有多大的把握认为对考试的结果满意与科别有关;
(2)用分层抽样方法在感觉不满意的学生中随机抽取5名,理科生应抽取几人;
(3)在(2)抽取的5名学生中任取2名,求文理科各有一名的概率.( K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)
P(K2≥k) 0.100 0.050 0.025 0.010 0.001
k 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)设一家公司开业后每年的利润为an万元,前n年的总利润为Sn万元,现知第一年的利润为2万元,且点(Sn,Sn+1)在函数f(x)=2x+n+1(n∈N*)图象上.
(1)求证:数列{an+1}(n>1)是等比数列;
(2)若b1=1,bn=
1
log2(
1
5
a2n+
1
5
)log2(
1
5
a2n+2+
1
5
)
(n≥2),求数列{bn}的前n项和Tn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)曲线C1的参数方程为
x=8t2
y=8t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C2的极坐标方程为ρ=r(r>0),若斜率为1的直线经过C1的焦点,且与C2相切,则r=
2
2

查看答案和解析>>

同步练习册答案