精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,点AB分别是椭圆的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为:.

(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于,求椭圆上的点到点M的距离d的最小值.
.⑵当时,,即.
本题主要考查了直线方程的点斜式在求解直线方程中的应用,结合椭圆的范围求解二次函数的最值,属于知识的简单综合。、
(I)由题设知A(-6,0),直线AP的斜率为 ,从而可得直线AP的方程
(2),则点M到直线AP的距离为
,依题意得
得到m的值,然后设椭圆上一点,则,即
得到d2的值。
解: ⑴由题意知,,从而 由题意得,,从而,,  ……….…………………………....(2分)
因此,直线AP的方程为:, 即.……….…...(4分)
⑵设,则点M到直线AP的距离为
,依题意得
解得(舍去),故.….………………………..…………....(7分)
设椭圆上一点,则,即
,……………….…....(10分)
所以当时,,即.-…………………………..………....(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(I) 已知抛物线过焦点的动直线l交抛物线于A,B两点,O为坐标原点, 求证: 为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点的动直线 l 交抛物线于两点, 存在定点, 使得为定值. 请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)

如图,在平面直角坐标系中,已知点为椭圆的右顶点, 点,点在椭
圆上, .

(1)求直线的方程;
(2)求直线被过三点的圆截得的弦长;
(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设是椭圆上的一点,为焦点,,则
的面积为(  )
A.B.C.D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 若椭圆过点,离心率为,⊙O的圆心在原点,直径为椭圆的短轴,⊙M的方程为,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1) 求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的右焦点重合,则的值为(  )
A.-2B.2 C.-4D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的离心率,则的值为 (       ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为椭圆的左、右顶点,若在椭圆上存在异于的点,使得,其中为坐标原点,则椭圆的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

同步练习册答案