精英家教网 > 高中数学 > 题目详情
18.过点(0,$\sqrt{3}$)与圆C:(x-1)2+y2=4相切的直线方程为y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$.

分析 确定点A(0,$\sqrt{3}$)在圆C:(x-1)2+y2=4上,求出切线斜率,即可得出切线方程.

解答 解:C:(x-1)2+y2=4的圆心坐标为(1,0),半径r=2,
点A(0,$\sqrt{3}$)在圆C:(x-1)2+y2=4上,kAC=-$\sqrt{3}$,
所以切线的斜率为$\frac{\sqrt{3}}{3}$,
所以切线方程为:y-$\sqrt{3}$=$\frac{\sqrt{3}}{3}$x,
即所求切线的方程为y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$.
故答案为:y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$.

点评 此题考查了直线与圆相切满足的关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),则∠ABC=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f[f(x)]≥-2,则x的取值范围是[-2,1]或$[\root{4}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(-2)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn.已知a1=1,$\frac{{2{S_n}}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an-an-1=bna${\;}_{2^n}}$,求数列{bn的n前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且Sn=$\frac{3}{2}$an-$\frac{3}{2}$,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an},{bn}的通项an和bn
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知y=f(x)为奇函数,当x>0时f(x)=x(1-x),则当x≤0时,则f(x)=x(1+x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB,b=2,则△ABC面积的最大值为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某闯关游戏有这样一个环节:该关卡有一道上了锁的门,要想通过该关卡,要拿到门前密码箱里的钥匙,才能开门过关.但是密码箱需要一个密码才能打开,并且3次密码尝试错误,该密码箱被锁定,从而闯关失败.某人到达该关卡时,已经找到了可能打开密码箱的6个密码(其中只有一个能打开密码箱),他决定从中随机地选择1个密码进行尝试.若密码正确,则通关成功;否则继续尝试,直至密码箱被锁定.
(1)求这个人闯关失败的概率;
(2)设该人尝试密码的次数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案