分析 a=bcosC+ccosB,又a=2cosC+csinB,b=2,可得B.由余弦定理可得:b2=a2+c2-2accosB,利用基本不等式的性质可得ac≤4+2$\sqrt{2}$,即可得出三角形面积的最大值.
解答 解:在△ABC中,∵a=bcosC+ccosB,又a=bcosC+csinB,b=2,
∴cosB=sinB,
∴tanB=1,B∈(0,π).
由余弦定理可得:b2=a2+c2-2accosB,
∴4≥2ac-$\sqrt{2}$ac,当且仅当a=c时取等号.
∴ac≤4+2$\sqrt{2}$.
∴S△ABC=$\frac{1}{2}$acsinB≤$\frac{1}{2}×$(4+2$\sqrt{2}$)×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$+1.
故答案为:$\sqrt{2}+1$.
点评 本题考查了余弦定理、三角形面积的计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 气温(oC) | 18 | 13 | 10 | -1 |
| 用电量(度) | 25 | 35 | 42 | 58 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{y≥1}\\{2x-y+2≥0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{y≥-1}\\{2x-y+2≤0}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≤0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≥0}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2 | B. | 1 | C. | b2 | D. | c2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q是真命题 | B. | p∨q是假命题 | C. | p是真命题 | D. | q是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com