精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$sin(2x+\frac{π}{6})$(x∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)求函数f(x)在区间$[{-\frac{π}{6},\frac{π}{6}}]$上的最大值和最小值.

分析 (1)利用周期公式求函数的最小正周期,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)x∈$[{-\frac{π}{6},\frac{π}{6}}]$上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值.

解答 解:函数f(x)=$sin(2x+\frac{π}{6})$(x∈R).
(1)函数f(x)的最小正周期T=$\frac{2π}{2}=π$;
令$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{3}+kπ$≤x≤$\frac{π}{6}+kπ$.
∴函数f(x)的单调递增区间为[$-\frac{π}{3}+kπ$,$\frac{π}{6}+kπ$],k∈Z.
(2)x∈$[{-\frac{π}{6},\frac{π}{6}}]$⇒$2x+\frac{π}{6}$∈[$-\frac{π}{6}$,$\frac{π}{2}$].
当$2x+\frac{π}{6}$=$-\frac{π}{6}$时,f(x)取得最小值为$-\frac{1}{2}$.
$2x+\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值为1.
∴函数f(x)在区间$[{-\frac{π}{6},\frac{π}{6}}]$上的最大值为1,最小值为$-\frac{1}{2}$.

点评 本题主要考查三角函数的图象和性质的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.直线l在平面α内,直线m平行于平面α,且与直线l异面,动点P在平面α上,且到直线l、m距离相等,则点P的轨迹为(  )
A.直线B.椭圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,则“$\overrightarrow{a}$,$\overrightarrow{b}$共线”是“|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直线y=kx+1和双曲线3x2-y2=1相交,交点为A、B,当k为何值时,以弦AB为直径的圆过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.公比为3的等比数列{an}的各项都是正数,且a1a5=9,则log3a6=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(3x+$\frac{π}{4}$)
(1)求f(x)的单调减区间;
(2)若α是锐角,f($\frac{α}{3}$)=cos2α,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+1|+2|x-a|.
(Ⅰ)若a=1,求不等式f(x)>2的解集;
(II)若函数y=f(x)的最小值为5,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知中心在原点,焦点在x轴上的椭圆经过等腰梯形ABCD的四个顶点,两腰与x轴相交于点M,N,且$\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$
(1)若等腰梯形的高等于3,上底BC=2,MN=6,求椭圆方程;
(2)当MN等于椭圆的短轴长时,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在△ABC中,a,b,c分别是角A,B,C所对应的边,且a-2b=0.
(1)若$B=\frac{π}{6}$,求C;
(2)若$C=\frac{2}{3}π,c=14$,求△ABC的面积.

查看答案和解析>>

同步练习册答案