精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使$\overrightarrow{AE}•\overrightarrow{BE}$恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

分析 (1)运用离心率公式和焦点坐标,直接求出a,b;
(2)利用设而不求的方法,设出要求的常数,并利用多项式的恒等条件(相同次项的系数相等)

解答 解:(1)由已知得$\frac{c}{a}=\frac{\sqrt{2}}{2},c=1$,∴a2=2,b2=1,
∴椭圆C的标准方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$
(2)依题意过点D(0,2)且斜率为k的直线l的方程为:y=kx+2
由$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$得(1+2k2)x2+8kx+6=0
设A(x1,y1),B(x2,y2)则x1+x2=-$\frac{8k}{1+2{k}^{2}}$,x1x2=$\frac{6}{1+2{k}^{2}}$;
又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=-$\frac{2{k}^{2}-4}{2{k}^{2}+1}$.
y1+y2=(kx1+2)+(kx2+2)=k(x1+x2)+4=$\frac{4}{2{k}^{2}+1}$.
设存在点E(0,m),则$\overrightarrow{AE}=(-{x}_{1},m-{y}_{1}),\overrightarrow{BE}=(-{x}_{2},m-{y}_{2})$.
所以$\overrightarrow{AE}•\overrightarrow{BE}={x}_{1}{x}_{2}+{m}^{2}-m({y}_{1}+{y}_{2})+{y}_{1}{y}_{2}$=$\frac{6}{2{k}^{2}+1}+{m}^{2}-m×\frac{4}{2{k}^{2}+1}-\frac{2{k}^{2}-4}{2{k}^{2}+1}$
=$\frac{(2{m}^{2}-2){k}^{2}+{m}^{2}-4m+10}{2{k}^{2}+1}$
要使$\overrightarrow{AE}•\overrightarrow{BE}$=t(t为常数),
只要 $\frac{(2{m}^{2}-2){k}^{2}+{m}^{2}-4m+10}{2{k}^{2}+1}$=t,从而(2m2-2-2t)k2+m2-4m+10-t=0
即2m2-2-2t=0且m2-4m+10-t=0由(1)得 t=m2-1,
代入(2)解得m=$\frac{11}{4}$,从而t=$\frac{105}{16}$,
故存在定点 E(0,$\frac{11}{4}$),使$\overrightarrow{AE}•\overrightarrow{BE}$恒为定值$\frac{105}{16}$.

点评 本题考查直线与椭圆的位置关系及定点定值问题,关键要掌握常见的处理方法与技巧,属于压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x∈R,x2-x+1>0,则¬p为(  )
A.?x∉R,x2-x+1>0B.?x0∉R,${x_0}^2-{x_0}+1≤0$
C.?x∈R,x2-x+1≤0D.?x0∈R,${x_0}^2-{x_0}+1≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若$a={({\frac{1}{2}})^{0.3}}$,$b={({\frac{1}{2}})^{-2}}$,$c=lo{g}_{\frac{1}{2}}2$,则a,b,c大小关系为(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的图象如图,则它的一个可能的解析式为(  )
A.y=2$\sqrt{x}$B.y=4-$\frac{4}{x+1}$C.y=log3(x+1)D.y=$\root{3}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sinx-2cosx,$x∈[-\frac{1}{2},1]$,g(x)=e1-2x
(1)求函数f(x)在x=0处的切线方程;
(2)求证:$x∈[-\frac{1}{2},1]$时,f(x)≥l(x)恒成立;
(3)求证:$x∈[-\frac{1}{2},1]$时,f(x)+g(x)≥0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-$\frac{a}{x}$.
(1)当a=-3时,求函数f(x)的单调增区间;
(2)若函数f(x)在[1,e]上的最小值为$\frac{3}{2}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中既是奇函数,又在区间(0,1)上是增函数的为(  )
A.y=lnxB.y=3xC.y=sinxD.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.p:x≠2或y≠4是q:x+y≠6的必要不充分条件.(四个选一个填空:充分不必要,必要不充分,充要,既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正方体ABCD-A1B1C1D1的棱长为1,E,F分别为BB1,CD的中点,则点F到平面A1D1E的距离为$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

同步练习册答案