精英家教网 > 高中数学 > 题目详情
数列{an}满足a1=
1
2
an+1=
1
2-an

(1)求数列{an}的通项公式;
(2)设ln(1+x)<x在x>0时成立,数列{an}的前n项和为Sn,证明Sn<n-ln(
n+2
2
)
分析:(1)利用已知条件,推出{
1
an-1
}
是首项为-2,公差为-1的等差数列.求出通项公式,然后求解即可.
(2)利用ln(1+x)<x在x>0时成立,推出数列an<1-ln(n+2)+ln(n+1),的关系式,通过数列消项求和,推出结果.
解答:解:(1)∵a1=
1
2
an+1=
1
2-an

an+1-1=
1
2-an
-1
=
an-1
2-an

1
an+1-1
=
2-an
an-1
=-1+
1
an-1

{
1
an-1
}
是首项为-2,公差为-1的等差数列.
1
an-1
=-n-1
,所以an=
n
n+1

数列{an}的通项公式为an=
n
n+1

(2)∵ln(1+x)<x在x>0时成立,
从而ln(1+
1
n+1
1
n+1
1-
1
n+1
<1-
ln(1+
1
n+1
),
an=1-
1
n+1
<1-ln(n+2)+ln(n+1),
Sn<(1-ln3+ln2)+(1-ln4+ln3)+…+[1-ln(n+2)+ln(n+1)]=n+ln(n+2)-ln2=n-ln(
n+2
2

Sn<n-ln(
n+2
2
)
点评:本题考查数列通项公式的求法,数列前n项和的求法,数列与不等式的综合应用,考查转化思想、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案