精英家教网 > 高中数学 > 题目详情

函数,过曲线上的点的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.

(1);(2)13;(3).

解析试题分析:(1)题目条件给出了关于的两组关系,第一问中又给出了一组关系,所以在第一问很容易就能将表达式求出;(2)我们求解无参函数在定区间上的最大值,只需求导看上的单调性,然后找到极小值就是最小值,最大值通过比较端点值即可判断出;(3)考查函数单调性的问题,我们可以将其转化为不等式恒成立问题,转化之后的不等式是比较常见的二次不等式恒成立,一般碰到这种问题我们采取分离参数的方法将参数分到一边,求出另一边的最值即可,另一边的函数是常见的对勾函数,在这里区间给的比较好,可以让我们用基本不等式解出最大值,然后参数大于最大值即可.
试题解析:(1)由,过上点的切线方
程为,即.而过上点的切
线方程为,故 ,∵处有极值,
,联立解得.∴.
,令,列下表:










 

 

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)设,证明:在区间内存在唯一的零点;
(Ⅱ)设,若对任意,有,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若,求最大值;
(2)已知正数满足.求证:
(3)已知,正数满足.证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求证:函数上单调递增;
(2)设,若直线轴,求两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数的两个极值点,其中
(1)求的取值范围;
(2)若,求的最大值.注:e是自然对数的底.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数满足:在定义域内存在实数,使(k为常数),则称“f(x)关于k可线性分解”.
(Ⅰ)函数是否关于1可线性分解?请说明理由;
(Ⅱ)已知函数关于可线性分解,求的取值范围;
(Ⅲ)证明不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求曲线在点处的切线方程;
(2)求函数的极大值和极小值,若函数有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案