设函数
,
;
(1)求证:函数
在
上单调递增;
(2)设
,![]()
,若直线![]()
轴,求
两点间的最短距离.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
函数
,过曲线
上的点
的切线方程为
.
(1)若
在
时有极值,求
的表达式;
(2)在(1)的条件下,求
在[-3,1]上的最大值;
(3)若函数
在区间[-2,1]上单调递增,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在
上的函数
,其中
为常数.
(1)当
是函数
的一个极值点,求
的值;
(2)若函数
在区间
上是增函数,求实数
的取值范围;
(3)当
时,若
,在
处取得最大值,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(I)求函数
的单调区间;
(Ⅱ)若
,试解答下列两小题.
(i)若不等式
对任意的
恒成立,求实数
的取值范围;
(ii)若
是两个不相等的正数,且以
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com