精英家教网 > 高中数学 > 题目详情

已知函数
(I)求函数的单调区间;
(Ⅱ)若,试解答下列两小题.
(i)若不等式对任意的恒成立,求实数的取值范围;
(ii)若是两个不相等的正数,且以,求证:

(I)①当时,递增区间是;②当时,递增区间是,递减区间为;(Ⅱ)(i)实数的取值范围为;(ii)详见试题解析.

解析试题分析:(I)首先求函数的定义域,再求的导数,令下面分讨论求函数的单调区间;(Ⅱ)(i)先由已知条件,将问题转化为求函数的导数:,由此讨论可得上为减函数,从而求得实数的取值范围;(ii)先根据已知条件把化简为,只要证,构造函数利用导数可得上单调递减,在上单调递增,最终证得
试题解析:(I)解:函数的定义域为
①当时,上恒成立,∴递增区间是
②当时,由可得,∴递增区间是,递减区间为.                                    (6分)
(Ⅱ)(i)解:设
上恒成立,∴上为减函数,∴实数的取值范围为.                              (10分)
(ii)证明:
.设,则
,得上单调递减,在上单调递增
.               (15分)
考点:1.导数与函数的单调性;2.利用导数求恒成立问题中的参数取值范围问题参数;3.利用导数证明不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)求证:函数上单调递增;
(2)设,若直线轴,求两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1) 求函数上的最小值;
(2) 若对一切恒成立,求实数的取值范围;
(3) 证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求处切线方程;
(2)求证:函数在区间上单调递减;
(3)若不等式对任意的都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)若函数上单调递减,求实数的取值范围;
(Ⅲ)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3) 证明:对任意的自然数n,有恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案