精英家教网 > 高中数学 > 题目详情
已知函数F(x)=
1
3
ax3-bx2+cx+d(a≠0)
的图象过原点,f(x)=F′(x),g(x)=f′(x),f(1)=0,函数y=f(x)与y=g(x)的图象交于不同的两点A、B.
(Ⅰ)若y=F(x)在x=-1处取得极大值2,求函数y=F(x)的单调区间;
(Ⅱ)若使g(x)=0的x值满足x∈[-
1
2
1
2
]
,求线段AB在x轴上的射影长的取值范围.
∵F(x)的图象过原点,∴d=0.
又f(x)=F'(x)=ax2-2bx+c,f(1)=0,,∴a+c=2b.…①…(2分)
(Ⅰ)由y=F(x)在x=-1处取得极大值2知:f(-1)=a+2b+c=0,…②
F(-1)=-
1
3
a-b-c=2
,…③…(4分)
由①②③得a=3,b=0,c=-3,
∴F(x)=x3-3x.…(5分)
由f(x)=3x2-3≥0,得x≥1或x≤-1;由f(x)=3x2-3≤0,得-1≤x≤1.
∴F(x)的单调递减区间为[-1,1],单调递增区间为(-∞,-1]和[1,+∞).…(7分)
(Ⅱ)f(x)=ax2-2bx+c=ax2-(a+c)x+c,,g(x)=2ax-2b=2ax-(a+c),
y=ax2-(a+c)x+c
y=2ax-(a+c)
,得ax2-(3a+c)x+a+2c=0.…(8分)
设A(x1y1),B(x2y2),则x1+x2=
3a+c
a
=3+
c
a
x1x2=
a+2c
a
=1+2•
c
a

∴线段AB在x轴上的射影长m=|x1-x2|=
(x1+x2)2-4x1x2
=
(
c
a
-1)
2
+4
.…(9分)
g(x)=0,得x=
1
2
(1+
c
a
).由x∈[-
1
2
1
2
]得-2≤
c
a
≤0
.…((10分)
∴当
c
a
=-2时,m取最大值
13
;当
c
a
=0时,m取最小值
5

5
≤m≤
13
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案